Значимый коэффициент. Критерий корреляции пирсона

Как неоднократно отмечалось, для статистического вывода о на­личии или отсутствии корреляционной связи между исследуемыми пе­ременными необходимо произвести проверку значимости выборочного коэффициента корреляции. В связи с тем что надежность статистиче­ских характеристик, в том числе и коэффициента корреляции, зависит от объема выборки, может сложиться такая ситуация, когда величина коэффициента корреляции будет целиком обусловлена случайными колебаниями в выборке, на основании которой он вычислен. При существенной связи между переменными коэффициент корреляции должен значимо отличаться от нуля. Если корреляционная связь меж­ду исследуемыми переменными отсутствует, то коэффициент корреля­ции генеральной совокупности ρ равен нулю. При практических ис­следованиях, как правило, основываются на выборочных наблюдениях. Как всякая статистическая характеристика, выборочный коэффициент корреляции является случайной величиной, т. е. его значения случай­но рассеиваются вокруг одноименного параметра генеральной совокуп­ности (истинного значения коэффициента корреляции). При отсутствии корреляционной связи между переменными у и х коэффициент корре­ляции в генеральной совокупности равен нулю. Но из-за случайного характера рассеяния принципиально возможны ситуации, когда не­которые коэффициенты корреляции, вычисленные по выборкам из этой совокупности, будут отличны от нуля.

Могут ли обнаруженные различия быть приписаны случайным ко­лебаниям в выборке или они отражают существенное изменение усло­вий формирования отношений между переменными? Если значения выборочного коэффициента корреляции попадают в зону рассеяния, обусловленную случайным характером самого показателя, то это не является доказательством отсутствия связи. Самое большее, что при этом можно утверждать, сводится к тому, что данные наблюдений не отрицают отсутствия связи между переменными. Но если значение вы­борочного коэффициента корреляции будет лежать вне упомянутой зоны рассеяния, то делают вывод, что он значимо отличается от нуля, и можно считать, что между переменными у и х существует статистиче­ски значимая связь. Используемый для решения этой задачи критерий, основанный на распределении различных статистик, называется крите­рием значимости.

Процедура проверки значимости начинается с формулировки ну­левой гипотезы H 0 . В общем виде она заключается в том, что между па­раметром выборки и параметром генеральной совокупности нет каких- либо существенных различий. Альтернативная гипотеза H 1 состоит в том, что между этими параметрами имеются существенные различия. Например, при проверке наличия корреляции в генеральной совокуп­ности нулевая гипотеза заключается в том, что истинный коэффициент корреляции равен нулю (Н0 : ρ = 0). Если в результате проверки ока­жется, что нулевая гипотеза не приемлема, то выборочный коэффи­циент корреляции r ух значимо отличается от нуля (нулевая гипотеза отвергается и принимается альтернативная Н1). Другими словами, предположение о некоррелированности случайных переменных в ге­неральной совокупности следует признать необоснованным. И нао­борот, если на основе критерия значимости нулевая гипотеза прини­мается, т. е. r ух лежит в допустимой зоне случайного рассеяния, то нет оснований считать сомнительным предположение о некоррелиро­ванности переменных в генеральной совокупности.

При проверке значимости исследователь устанавливает уровень значимости α, который дает определенную практическую уверенность в том, что ошибочные заключения будут сделаны только в очень ред­ких случаях. Уровень значимости выражает вероятность того, что ну­левая гипотеза Н0 отвергается в то время, когда она в действительности верна. Ясно, что имеет смысл выбирать эту вероятность как можно меньшей.

Пусть известно распределение выборочной характеристики, яв­ляющейся несмещенной оценкой параметра генеральной совокупности. Выбранному уровню значимости α соответствуют под кривой этого распределения заштрихованные площади (см. рис. 24). Незаштрихованная площадь под кривой распределения определяет вероятность Р = 1 - α. Границы отрезков на оси абсцисс под заштрихованными площадями называют критическими значениями, а сами отрезки обра­зуют критическую область, или область отклонения гипотезы.

При процедуре проверки гипотезы выборочную характеристику, вычисленную по результатам наблюдений, сравнивают с соответствую­щим критическим значением. При этом следует различать односторон­нюю и двустороннюю критические области. Форма задания критической области зависит от постановки задачи при статистическом исследова­нии. Двусторонняя критическая область необходима в том случае, когда при сравнении параметра выборки и параметра генеральной со­вокупности требуется оценить абсолютную величину расхождения между ними, т. е. представляют интерес как положительные, так и от­рицательные разности между изучаемыми величинами. Когда же надо убедиться в том, что одна величина в среднем строго больше или мень­ше другой, используется односторонняя критическая область (право- или левосторонняя). Вполне очевидно, что для одного и того же критического значения уровень значимости при использовании одно­сторонней критической области меньше, чем при использовании дву­сторонней. Если распределение выборочной характеристики симметрично,

Рис. 24. Проверка нулевой гипотезы H0

то уровень значимости двусторонней критической области равен α, а односторонней - (см. рис. 24). Ограничимся лишь общей по­становкой проблемы. Более подробно с теоретическим обоснованием проверки статистических гипотез можно познакомиться в специальной литературе. Далее мы лишь укажем критерии значимости для различ­ных процедур, не останавливаясь на их построении.

Проверяя значимость коэффициента парной корреляции, устанав­ливают наличие или отсутствие корреляционной связи между исследуе­мыми явлениями. При отсутствии связи коэффициент корреляции гене­ральной совокупности равен нулю (ρ = 0). Процедура проверки на­чинается с формулировки нулевой и альтернативной гипотез:

Н0 : различие между выборочным коэффициентом корреляцииr и ρ = 0 незначимо,

Н1 : различие междуr и ρ = 0 значимо, и следовательно, между переменнымиу и х имеется существенная связь. Из альтернативной ги­потезы следует, что нужно воспользоваться двусторонней критической областью.

В разделе 8.1 уже упоминалось, что выборочный коэффициент кор­реляции при определенных предпосылках связан со случайной вели­чиной t , подчиняющейся распределению Стьюдента сf = п - 2 сте­пенями свободы. Вычисленная по результатам выборки статистика

сравнивается с критическим значением, определяемым по таблице рас­пределения Стьюдента при заданном уровне значимости α и f = п - 2 степенях свободы. Правило применения критерия заключается в сле­дующем: если |t | >tf , то нулевая гипотеза на уровне значимостиα отвергается, т. е. связь между переменными значима; если |t | ≤tf , то нулевая гипотеза на уровне значимостиαпринимается. Отклонение значенияr от ρ = 0 можно приписать случайной вариации. Данные выборки характеризуют рассматриваемую гипотезу как весьма возмож­ную и правдоподобную, т. е. гипотеза об отсутствии связи не вызывает возражений.

Процедура проверки гипотезы значительно упрощается, если вместо статистики t воспользоваться критическими значениями коэф­фициента корреляции, которые могут быть определены через квантили распределения Стьюдента путем подстановки в (8.38)t = tf , а иr = ρ f , а:

(8.39)

Существуют подробные таблицы критических значений, выдержка из которых приведена в приложении к данной книге (см. табл. 6). Правило проверки гипотезы в этом случае сводится к следующему: если r > ρ f , а, то можем утверждать, что связь между переменными су­щественная. Еслиr rf , то результаты наблюдений считаем непро­тиворечащими гипотезе об отсутствии связи.

​ Критерий корреляции Пирсона – это метод параметрической статистики, позволяющий определить наличие или отсутствие линейной связи между двумя количественными показателями, а также оценить ее тесноту и статистическую значимость. Другими словами, критерий корреляции Пирсона позволяет определить, есть ли линейная связь между изменениями значений двух переменных. В статистических расчетах и выводах коэффициент корреляции обычно обозначается как r xy или R xy .

1. История разработки критерия корреляции

Критерий корреляции Пирсона был разработан командой британских ученых во главе с Карлом Пирсоном (1857-1936) в 90-х годах 19-го века, для упрощения анализа ковариации двух случайных величин. Помимо Карла Пирсона над критерием корреляции Пирсона работали также Фрэнсис Эджуорт и Рафаэль Уэлдон .

2. Для чего используется критерий корреляции Пирсона?

Критерий корреляции Пирсона позволяет определить, какова теснота (или сила) корреляционной связи между двумя показателями, измеренными в количественной шкале. При помощи дополнительных расчетов можно также определить, насколько статистически значима выявленная связь.

Например, при помощи критерия корреляции Пирсона можно ответить на вопрос о наличии связи между температурой тела и содержанием лейкоцитов в крови при острых респираторных инфекциях, между ростом и весом пациента, между содержанием в питьевой воде фтора и заболеваемостью населения кариесом.

3. Условия и ограничения применения критерия хи-квадрат Пирсона

  1. Сопоставляемые показатели должны быть измерены в количественной шкале (например, частота сердечных сокращений, температура тела, содержание лейкоцитов в 1 мл крови, систолическое артериальное давление).
  2. Посредством критерия корреляции Пирсона можно определить лишь наличие и силу линейной взаимосвязи между величинами. Прочие характеристики связи, в том числе направление (прямая или обратная), характер изменений (прямолинейный или криволинейный), а также наличие зависимости одной переменной от другой - определяются при помощи регрессионного анализа .
  3. Количество сопоставляемых величин должно быть равно двум. В случае анализ взаимосвязи трех и более параметров следует воспользоваться методом факторного анализа .
  4. Критерий корреляции Пирсона является параметрическим , в связи с чем условием его применения служит нормальное распределение сопоставляемых переменных. В случае необходимости корреляционного анализа показателей, распределение которых отличается от нормального, в том числе измеренных в порядковой шкале, следует использовать коэффициент ранговой корреляции Спирмена .
  5. Следует четко различать понятия зависимости и корреляции. Зависимость величин обуславливает наличие корреляционной связи между ними, но не наоборот.

Например, рост ребенка зависит от его возраста, то есть чем старше ребенок, тем он выше. Если мы возьмем двух детей разного возраста, то с высокой долей вероятности рост старшего ребенка будет больше, чем у младшего. Данное явление и называется зависимостью , подразумевающей причинно-следственную связь между показателями. Разумеется, между ними имеется и корреляционная связь , означающая, что изменения одного показателя сопровождаются изменениями другого показателя.

В другой ситуации рассмотрим связь роста ребенка и частоты сердечных сокращений (ЧСС). Как известно, обе эти величины напрямую зависят от возраста, поэтому в большинстве случаев дети большего роста (а значит и более старшего возраста) будут иметь меньшие значения ЧСС. То есть, корреляционная связь будет наблюдаться и может иметь достаточно высокую тесноту. Однако, если мы возьмем детей одного возраста , но разного роста , то, скорее всего, ЧСС у них будет различаться несущественно, в связи с чем можно сделать вывод о независимости ЧСС от роста.

Приведенный пример показывает, как важно различать фундаментальные в статистике понятия связи и зависимости показателей для построения верных выводов.

4. Как рассчитать коэффициента корреляции Пирсона?

Расчет коэффициента корреляции Пирсона производится по следующей формуле:

5. Как интерпретировать значение коэффициента корреляции Пирсона?

Значения коэффициента корреляции Пирсона интерпретируются исходя из его абсолютных значений. Возможные значения коэффициента корреляции варьируют от 0 до ±1. Чем больше абсолютное значение r xy – тем выше теснота связи между двумя величинами. r xy = 0 говорит о полном отсутствии связи. r xy = 1 – свидетельствует о наличии абсолютной (функциональной) связи. Если значение критерия корреляции Пирсона оказалось больше 1 или меньше -1 – в расчетах допущена ошибка.

Для оценки тесноты, или силы, корреляционной связи обычно используют общепринятые критерии, согласно которым абсолютные значения r xy < 0.3 свидетельствуют о слабой связи, значения r xy от 0.3 до 0.7 - о связи средней тесноты, значения r xy > 0.7 - о сильной связи.

Более точную оценку силы корреляционной связи можно получить, если воспользоваться таблицей Чеддока :

Оценка статистической значимости коэффициента корреляции r xy осуществляется при помощи t-критерия, рассчитываемого по следующей формуле:

Полученное значение t r сравнивается с критическим значением при определенном уровне значимости и числе степеней свободы n-2. Если t r превышает t крит, то делается вывод о статистической значимости выявленной корреляционной связи.

6. Пример расчета коэффициента корреляции Пирсона

Целью исследования явилось выявление, определение тесноты и статистической значимости корреляционной связи между двумя количественными показателями: уровнем тестостерона в крови (X) и процентом мышечной массы в теле (Y). Исходные данные для выборки, состоящей из 5 исследуемых (n = 5), сведены в таблице.

Полный вариант этой заметки (с формулами и таблицами) можно скачать с этой страницы в формате PDF. Размещенный на самой странице текст является кратким изложением содержания этой заметки и наиболее важных выводов.

Оптимистам от статистики посвящается

Коэффициент корреляции (КК) -- одна из наиболее простых и популярных статистик, характеризующих связь между случайными величинами. Одновременно КК удерживает первенство по числу сделанных с его помощью ошибочных и просто бессмысленных выводов. Такое положение обусловлено сложившейся практикой изложения материала, относящегося к корреляции и корреляционным зависимостям.

Большие, маленькие и "промежуточные" значения КК

При рассмотрении корреляционной связи подробно обсуждается понятие «сильной» (почти единичной) и «слабой» (почти нулевой) корреляции, но на практике ни та, ни другая никогда не встречаются. В результате остается неясным вопрос о разумной трактовке обычных для практики «промежуточных» значений КК. Коэффициент корреляции, равный 0.9 или 0.8 , новичку внушает оптимизм, а меньшие значения приводят его в замешательство.

По мере приобретения опыта оптимизм растет, и вот уже КК, равный 0.7 или 0.6 приводит исследователя в восторг, а оптимизм внушают значения 0.5 и 0.4 . Если же исследователь знаком с методами проверки статистических гипотез, то порог «хороших» значений КК падает до 0.3 или 0.2 .

Действительно, какие значения КК уже можно считать «достаточно большими», а какие остаются «слишком маленькими»? На этот вопрос имеется два диаметрально противоположных ответа -- оптимистичный и пессимистичный. Рассмотрим сначала оптимистичный (наиболее популярный) вариант ответа.

Значимость коэффициента корреляции

Этот вариант ответа дает нам классическая статистика и он связан с понятием статистической значимости КК. Мы рассмотрим здесь только ситуацию, когда интерес представляет положительная корреляционная связь (случай отрицательной корреляционной связи совершенно аналогичен). Более сложный случай, когда проверяется только наличие корреляционной связи без учета знака, относительно редко встречается на практике.

Если для КК r выполнено неравенство r > r e (n) , то говорят, что КК статистически значим при уровне значимости е . Здесь r e (n) -- квантиль, относительно которого нас будет интересовать только то, что при фиксированном уровне значимости e его значение стремится к нулю с ростом длины n выборки. Получается, что увеличивая массив данных можно добиться статистической значимости КК даже при весьма малых его значениях. В результате при наличии достаточно большой выборки появляется соблазн признать наличие в случае КК, равного, например, 0.06 . Тем не менее, здравый смысл подсказывает, что вывод о наличии значимой корреляционной связи при r=0.06 не может быть справедливым ни при каком объеме выборки. Остается понять природу ошибки. Для этого рассмотрим подробнее понятие статистической значимости.

Как обычно, при проверке статистических гипотез смысл проводимых расчетов кроется в выборе нуль-гипотезы и альтернативной гипотезы. При проверке значимости КК в качестве нуль-гипотезы берется предположение { r = 0 } при альтернативной гипотезе { r > 0 } (напомним, что мы рассматриваем здесь только ситуацию, когда интерес представляет положительная корреляционная связь). Выбираемый произвольно уровень значимости e определяет вероятность т.н. ошибки первого рода, когда нуль-гипотеза верна (r=0 ), но отклоняется статистическим критерием (т.е. критерий ошибочно признает наличие значимой корреляции). Выбирая уровень значимости, мы гарантируем малую вероятность такой ошибки, т.е. мы почти застрахованы от того, чтобы для независимых выборок (r=0 ) ошибочно признать наличие корреляционной связи (r > 0 ). Грубо говоря, значимость коэффициента корреляции означает только то, что он с большой вероятностью отличен от нуля .

Именно поэтому размер выборки и величина КК компенсируют друг друга -- большие выборки попросту позволяют добиться большей точности в локализации малого КК по его выборочной оценке.

Ясно, что понятие значимости не дает ответа на исходный вопрос о понимании категорий "большой/маленький" применительно к значениям КК. Ответ, даваемый критерием значимости, ничего не говорит нам о свойствах корреляционной связи, а позволяет только убедиться, что с большой вероятностью выполнено неравенство r > 0 . В то же время, само значение КК содержит значительно более существенную информацию о свойствах корреляционной связи. Действительно, одинаково значимые КК, равные 0.1 и 0.9 , существенно различаются по степени выраженности соответствующей корреляционной связи, а утверждение о значимости КК r = 0.06 для практики абсолютно бесполезно, поскольку при любых объемах выборки ни о какой корреляционной связи здесь говорить не приходится.

Окончательно можно сказать, что на практике из значимости коэффициента корреляции не следуют какие бы то ни было свойства корреляционной связи и даже само ее существование . С точки зрения практики порочен сам выбор альтернативной гипотезы, используемой при проверке значимости КК, поскольку случаи r=0 и r>0 при малых r с практической точки зрения неотличимы.

Фактически, когда из значимости КК выводят существование значимой корреляционной связи , производят совершенно беспардонную подмену понятий, основанную на смысловой неоднозначности слова "значимость". Значимость КК (четко определенное понятие) обманно превращают в "значимую корреляционную связь", а это словосочетание, не имеющее строгого определения, трактуют как синоним "выраженной корреляционной связи".

Расщепление дисперсии

Рассмотрим другой вариант ответа на вопрос о "малых" и "больших" значениях КК. Этот вариант ответа связан с выяснением регрессионоого смысла КК и оказывается весьма полезным для практики, хотя и отличается гораздо меньшим оптимизмом, чем критерии значимости КК.

Интересно, что обсуждение регрессионоого смысла КК часто наталкивается на трудности дидактического (а скорее психологического) характера. Кратко прокомментируем их. После формального введения КК и пояснения смысла "сильной" и "слабой" корреляционной связи считается необходимым углубиться в обсуждение философских вопросов соотношения между корреляционными и причинно-следственными связями. При этом делаются энергичные попытки откреститься от (гипотетической!) попытки трактовать корреляционную связь как причинно-следственную. На этом фоне обсуждение вопроса о наличии функциональной зависимости (в том числе и регрессионной) между коррелирующими величинами начинает казаться попросту кощунственной. Ведь от функциональной зависимости до причинно-следственной связи всего один шаг! В результате вопрос о регрессионном смысле КК вообще обходится стороной, так же как и вопрос о корреляционных свойствах линейной регресии.

На самом деле тут все просто. Если для нормированных (т.е. имеющих нулевое матожидание и единичную дисперсию) случайных величин X и Y имеет место соотношение

Y = a + bX + N,

где N -- некоторая случайная величина с нулевым матожиданием (аддитивный шум), то легко убедиться, что a = 0 и b = r . Это соотношение между случайными величинами X и Y называется уравнением линейной регрессии.

Вычисляя дисперсию случайной величины Y легко получить следующее выражение:

D[Y] = b 2 D[X] + D[N].

В последнем выражении первое слагаемое определяет вклад случайной величины X в дисперсию Y , а второе слагаемое -- вклад шума N в дисперсию Y . Используя полученное выше выражение для параметра b , легко выразить вклады случайных величин X и N через величину r = r (напомним, что мы считаем величины X и Y нормированными, т.е. D[X] = D[Y] = 1 ):

b 2 D[X] = r 2

D[N] = 1 - r 2

С учетом полученных формул часто говорят, что для случайных величин X и Y , связанных регрессионным уравнением, величина r 2 определяет долю дисперсии случайной величины Y , линейно обусловленную изменением случайной величины X . Итак, суммарная дисперсия случайной величины Y распадается на дисперсию, линейно обусловленную наличием регрессионной связи и остаточную дисперсию , обусловленную присутствием аддитивного шума.


Рассмотрим диаграмму рассеяния двумерной случайной величины (X, Y) . При малых D[N] диаграмма рассеяния вырождается в линейную зависимость между случайными величинами, слегка искаженную аддитивным шумом (т.е. точки на диаграмме рассеяния будут в основном сосредоточены вблизи прямой X=Y ). Такой случай имеет место при значениях r , близких по модулю к единице. При уменьшении (по модулю) величины КК дисперсия шумовой составляющей N начинает давать все больший вклад в дисперсию величины Y и при малых r диаграмма рассеяния полностью теряет сходство с прямой линией. В этом случае мы имеем облако точек, рассеяние которых в основном обусловлено шумом. Именно этот случай реализуется при значимых, но малых по абсолютной величине значениях КК. Ясно, что в этом случае ни о какой корреляционной связи говорить не приходится.

Посмотрим теперь, какой вариант ответа на вопрос о "больших" и "маленьких" значениях КК предлагает нам регрессионная интерпретация КК. В первую очередь необходимо подчеркнуть, что именно дисперсия является наиболее естественной мерой рассеяния значений случайной величины. Природа этой "естественности" состоит в аддитивности дисперсии для независимых случайных величин, но это свойство имеет очень многообразные проявления, к числу которых относится и продемонстрированное выше расщепление дисперсии на линейно обусловленную и остаточную дисперсии.

Итак, величина r 2 определяет долю дисперсии величины Y , линейно обусловленную наличием регрессионной связи со случайной величиной X . Вопрос о том, какую долю линейно обусловленной дисперсии можно считать признаком наличия выраженной корреляционной связи, остается на совести исследователя. Тем не менее, становится ясно, что малые значения коэффициента корреляции (r < 0.3 ) дают настолько малую долю линейно объясненной дисперсии, что бессмысленно говорить о какой бы то ни было выраженной корреляционной связи. При r > 0.5 можно говорить о наличии заметной корреляционной связи между величинами, а при r > 0.7 корреляционная связь может рассматриваться как существенная.

Этап 3. Нахождение взаимосвязи между данными

Линейная корреляция

Последний этап задачи изучения связей между явлениями – оценка тесноты связи по показателям корреляционной связи. Этот этап очень важен для выявления зависимостей между факторными и результативными признаками, а следовательно, для возможности осуществления диагноза и прогноза изучаемого явления.

Диагноз (от греч. diagnosis распознавание) – определение существа и особенностей состояния какого-либо объекта или явления на основе его всестороннего исследования.

Прогноз (от греч. prognosis предвидение, предсказание) – всякое конкретное предсказание, суждение о состоянии какого-либо явления в будущем (прогноз погоды, исхода выборов и т.п.). Прогноз – это научно обоснованная гипотеза о вероятном будущем состоянии изучаемой системы, объекта или явления и характеризующие это состояние показатели. Прогнозирование – разработка прогноза, специальные научные исследования конкретных перспектив развития какого-либо явления.

Вспомним определение корреляции:

Корреляция – зависимость между случайными величинами, выражающаяся в том, что распределение одной величины зависит от значения другой величины.

Корреляционная связь наблюдается не только между количественными, но и качественными признаками. Существуют различные способы и показатели оценки тесноты связей. Мы остановимся лишь на линейном коэффициенте парной корреляции , который используется при наличии линейной связи между случайными величинами. На практике часто возникает необходимость определить уровень связи между случайными величинами неодинаковой размерности, поэтому желательно располагать какой-то безразмерной характеристикой этой связи. Такой характеристикой (мерой связи) является коэффициент линейной корреляции r xy , который определяется по формуле

где , .

Обозначив и , можно получить следующее выражение для расчета коэффициента корреляции

.

Если ввести понятие нормированного отклонения , которое выражает отклонение коррелируемых значений от среднего в долях среднего квадратического отклонения:



то выражение для коэффициента корреляции примет вид

.

Если производить расчет коэффициента корреляции по итоговым значениям исходных случайных величин из расчетной таблицы, то коэффициент корреляции можно вычислить по формуле

.

Свойства коэффициента линейной корреляции:

1). Коэффициент корреляции – безразмерная величина.

2). |r | £ 1 или .

3). , a,b = const, – величина коэффициента корреляции не изменится, если все значения случайных величин X и Y умножить (или разделить) на константу.

4). , a,b = const, – величина коэффициента корреляции не изменится, если все значения случайных величин X и Y увеличить (или уменьшить) на константу.

5). Между коэффициентом корреляции и коэффициентом регрессии существует связь:

Интерпретировать значения коэффициентов корреляции можно следующим образом:

Количественные критерии оценки тесноты связи:

В прогностических целях обычно используют величины с |r| > 0.7.

Коэффициент корреляции позволяет сделать вывод о существовании линейной зависимости между двумя случайными величинами, но не указывает, какая из величин обуславливает изменение другой. В действительности связь между двумя случайными величинами может существовать и без причинно-следственной связи между самими величинами, т.к. изменение обеих случайных величин может быть вызвано изменением (влиянием) третьей.

Коэффициент корреляции r xy является симметричным по отношению к рассматриваемым случайным величинам X и Y . Это означает, что для определения коэффициента корреляции совершенно безразлично, какая из величин является независимой, а какая – зависимой.

Значимость коэффициента корреляции

Даже для независимых величин коэффициент корреляции может оказаться отличным от нуля вследствие случайного рассеяния результатов измерений или вследствие небольшой выборки случайных величин. Поэтому следует проверять значимость коэффициента корреляции.

Значимость линейного коэффициента корреляции проверяется на основе t-критерия Стьюдента :

.

Если t > t кр (P, n -2), то линейный коэффициент корреляции значим, а следовательно, значима и статистическая связь X и Y .

.

Для удобства вычислений созданы таблицы значений доверительных границ коэффициентов корреляции для различного числа степеней свободы f = n –2 (двусторонний критерий) и различных уровней значимости a = 0,1; 0,05; 0,01 и 0,001. Считается, что корреляция значима, если рассчитанный коэффициент корреляции превосходит значение доверительной границы коэффициента корреляции для заданных f и a .

Для больших n и a = 0,01 значение доверительной границы коэффициента корреляции можно вычислить по приближенной формуле

.

ИСХОДНЫЕ ДАННЫЕ

ОЦЕНКА ДОСТОВЕРНОСТИ КОЭФФИЦИЕНТА КОРРЕЛЯЦИИ

Коэффициент линейной корреляции, исчисленный по выборочным данным является случайной величиной. Полученный из выборки коэффициент корреляции r является оценкой коэффициента корреляцииr в генеральной совокупности. С уменьшением числа наблюдений надежность коэффициента корреляции падает. Оценка существенности (значимости) линейного коэффициента корреляции основана на сопоставлении значения r с его средней квадратической ошибкой :

При оценке значимости коэффициента корреляции обычно рассматриваются следующие ситуации.

1. Если число наблюдений достаточно велико (обычно свыше 30), а значение коэффициента корреляции не превышает 0.9, распределение коэффициента корреляции r можно считать приближенно нормальным со средней квадратической ошибкой

При достаточно большом числе наблюдений r должен превышать свою среднюю ошибку не менее, чем в три раза: . Если это неравенство не выполняется, то существование связи между признаками нельзя считать доказанным.

Задавшись определенной вероятностью, можно построить доверительные границы r:

Так, например, при вероятности 0,95, для которой t = 1,96, доверительные границы составят

,

При вероятности 0,997, для которой коэффициент доверия t = 3, доверительные границы составят

Поскольку значение r не может превышать единицу, то в случае, если > 1, следует указать только нижний предел, то есть утверждать, что реальный r не меньше, чем .

2. Для малого объема выборки, с распределением r далеким от нормального, применяются другие методы оценки значимости коэффициента корреляции. При небольшом числе наблюдений (n< 30), средняя ошибка линейного коэффициента корреляции находится по формуле:

а значимость проверяется на основе t критерия Стьюдента. При этом выдвигается гипотеза о равенстве коэффициента корреляции нулю, то есть об отсутствии связи между y и x в генеральной совокупности. Для этого используется статистика:

,

расчетное значение которой сопоставляется с табличным, из таблиц распределения Стьюдента. Если нулевая гипотеза верна, то есть r =0, то распределение t - критерия подчиняется закону распределения Стьюдента сn-2 степенями свободы и принятым уровнем значимости (обычно 0,05). В каждом конкретном случае по таблице распределения t -критерия Стьюдента находится табличное (критическое) значение t , которое допустимо при справедливости нулевой гипотезы, и с ним сравнивается фактическое (расчетное) значение t . Если t расч. > t табл . , то нулевая гипотеза отклоняется и линейный коэффициент считается значимым, а связь между x и y – существенной. И наоборот.



3. При малом числе наблюдений в выборке и высоком коэффициенте корреляции (распределение r отличается от нормального) для проверки гипотезы о наличии корреляционной связи, а также построения доверительного интервала применяется z-преобразование Фишера.

Для этого рассчитывается величина

Распределение z приближается к нормальному. Вариация z выражается формулой

Рассчитаем zкритерий для примера 1, поскольку в этом случае мы имеем небольшое число наблюдений и высокий коэффициент корреляции.

.

Чтобы не вычислять значения логарифмов, можно воспользоваться специальными таблицами Z-преобразований (Ефимова М.Р. стр. 402, Шмойлова Р.А. стр.446, Елисеева И.И. стр.473). Находим, что коэффициенту корреляции 0,94 соответствуетZ=1,74.

Отношение Z к средней квадратической ошибке равно 3. Таким образом, мы можем полагать действительное наличие связи между величиной выпуска продукции и расходом электроэнергии для всей совокупности предприятий.

Расчет коэффициентов корреляции произведем в программе STATISTICA.

Рисунок 1 – Корреляционная матрица.

Корреляция определяет степень, с которой значения двух переменных «пропорциональны» друг другу. Пропорциональность означает просто линейную зависимость . Корреляция высокая, если на графике зависимость «можно представить» прямой линией (с положительным или отрицательным углом наклона). Таким образом, это простейшая регрессионная модель, описывающая зависимость одной переменной от одного фактора.

Отметим основные характеристики этого показателя.

Он может принимать значения от –1 до +1. Знак «+» означает, что связь прямая (когда значения одной переменной возрастают, значения другой переменной также возрастают), «–» означает, что связь обратная.

Чем ближе коэффициент к 1, величине коэффициента корреляции менее 0,3 связь оценивается как слабая, от 0,31 до 0,5 – умеренная, от 0,51 до 0,7 – значительная, от 0,71 до 0,9 – тесная, 0,91 и выше – очень тесная.

Если все значения переменных увеличить (уменьшить) на одно и то же число или в одно и то же число раз, то величина коэффициента корреляции не изменится.

Коэффициент корреляции – это показатель, оценивающий тесноту линейной связи между признаками.

При r = ±1 корреляционная связь представляет линейную функциональную зависимость. При этом все наблюдаемые значения располагаются на общей прямой. Ее еще называют линией регрессии. При r = 0 линейная корреляционная связь отсутствует. При этом групповые средние переменных совпадают с их общими средними, а линии регрессии параллельны осям координат.

Равенство r = 0 говорит лишь об отсутствии линейной корреляционной зависимости (некоррелированности переменных), но не вообще об отсутствии корреляционной, а тем более, статистической зависимости.

Основываясь на коэффициентах корреляции, мы не можем строгодоказать причинной зависимости между переменными, однако можетеопределить ложные корреляции, т. е. корреляции, которые обусловленывлияниями «других», остающихся вне вашего поля зрения переменных.

Основная проблема ложной корреляции состоит в том, что мы не знаем,

кто является еѐ носителем. Тем не менее, если мы знаем, где искать, то

можно воспользоваться частные корреляции, чтобы контролировать (частично исключѐнное) влияние определѐнных переменных.


Рисунок 2 – Диаграммы рассеяния.