Интервальный ряд пример. Сводка и группировка статистических данных

Группировка – это разбиение совокупности на группы, однородные по какому-либо признаку.

Назначение сервиса . С помощью онлайн-калькулятора Вы сможете:

  • построить вариационный ряд , построить гистограмму и полигон;
  • найти показатели вариации (среднюю, моду (в т.ч. и графическим способом), медиану, размах вариации, квартили, децили, квартильный коэффициент дифференциации, коэффициент вариации и другие показатели);

Инструкция . Для группировки ряда необходимо выбрать вид получаемого вариационного ряда (дискретный или интервальный) и указать количество данных (количество строк). Полученное решение сохраняется в файле Word (см. пример группировки статистических данных).

Количество исходных данных
",0);">

Если группировка уже осуществлена и заданы дискретный вариационный ряд или интервальный ряд , то необходимо воспользоваться онлайн-калькулятором Показатели вариации . Проверка гипотезы о виде распределения производится с помощью сервиса Изучение формы распределения .

Виды статистических группировок

Вариационный ряд . В случае наблюдений дискретной случайной величины одно и то же значение можно встретить несколько раз. Такие значения x i случайной величины записывают с указанием n i числа раз его появления в n наблюдениях, это и есть частота данного значения.
В случае непрерывной случайной величины на практике применяют группировку.
  1. Типологическая группировка – это разделение исследуемой качественно разнородной совокупности на классы, социально–экономические типы, однородные группы единиц. Для построения данной группировки используйте параметр Дискретный вариационный ряд.
  2. Структурной называется группировка , в которой происходит разделение однородной совокупности на группы, характеризующие ее структуру по какому–либо варьирующему признаку. Для построения данной группировки используйте параметр Интервальный ряд.
  3. Группировка, выявляющая взаимосвязи между изучаемыми явлениями и их признаками, называется аналитической группировкой (см. аналитическая группировка ряда).

Принципы построения статистических группировок

Ряд наблюдений, упорядоченных по возрастанию, называется вариационным рядом . Группировочным признаком называется признак, по которому производится разбивка совокупности на отдельные группы. Его называют основанием группировки. В основание группировки могут быть положены как количественные, так и качественные признаки.
После определения основания группировки следует решить вопрос о количестве групп, на которые надо разбить исследуемую совокупность.

При использовании персональных компьютеров для обработки статистических данных группировка единиц объекта производится с помощью стандартных процедур.
Одна из таких процедур основана на использовании формулы Стерджесса для определения оптимального числа групп:

k = 1+3,322*lg(N)

Где k – число групп, N – число единиц совокупности.

Длину частичных интервалов вычисляют как h=(x max -x min)/k

Затем подсчитывают числа попаданий наблюдений в эти интервалы, которые принимают за частоты n i . Малочисленные частоты, значения которых меньше 5 (n i < 5), следует объединить. в этом случае надо объединить и соответствующие интервалы.
В качестве новых значений вариант берут середины интервалов x i =(c i-1 +c i)/2.

Высшего профессионального образования

«РОССИЙСКАЯ АКАДЕМИЯ НАРОДНОГО ХОЗЯЙСТВА И

ГОСУДАРСТВЕННОЙ СЛУЖБЫ ПРИ ПРЕЗИДЕНТЕ

РОССИЙСКОЙ ФЕДЕРАЦИИ»

(Калужский филиал)

Кафедра естественнонаучных и математических дисциплин

КОНТРОЛЬНАЯ РАБОТА

По дисциплине «Статистика»

Студент___Майборода Галина Юрьевна______

Заочного отделения факультет Государственное и муниципальное управление группа Г-12-В

Преподаватель ____________________ Хамер Г.В.

К.п.н., доцент

Калуга-2013 г.

Задача 1.

Задача 1.1. 4

Задача 1.2. 16

Задача 1.3. 24

Задача 1.4. 33

Задача 2.

Задача 2.1. 43

Задача 2.2. 48

Задача 2.3. 53

Задача 2.4. 58

Задача 3.

Задача 3.1. 63

Задача 3.2. 68

Задача 3.3. 73

Задача 3.4. 79

Задача 4.

Задача 4.1. 85

Задача 4.2. 88

Задача 4.3. 90

Задача 4.4. 93

Список использованных источников. 96

Задача 1.

Задача 1.1.

Имеются следующие данные о выпуске продукции и сумме прибыли предприятиями области (таблица 1).

Таблица 1

Данные о выпуске продукции и сумме прибыли предприятиями

№ предприятия Выпуск продукции, млн. руб. Прибыль, млн. руб. № предприятия Выпуск продукции, млн. руб. Прибыль, млн. руб.
63,0 6,7 56,0 7,2
48,0 6,2 81,0 9,6
39,0 6,5 55,0 6,3
28,0 3,0 76,0 9,1
72,0 8,2 54,0 6,0
61,0 7,6 53,0 6,4
47,0 5,9 68,0 8,5
37,0 4,2 52,0 6,5
25,0 2,8 44,0 5,0
60,0 7,9 51,0 6,4
46,0 5,5 50,0 5,8
34,0 3,8 65,0 6,7
21,0 2,1 49,0 6,1
58,0 8,0 42,0 4,8
45,0 5,7 32,0 4,6

По исходным данным:

1. Постройте статистический ряд распределения предприятий по выпуску продукции, образовав пять групп с равными интервалами.

Постройте графики ряда распределения: полигон, гистограмму, кумуляту. Графически определите значение моды и медианы.

2. Рассчитайте характеристики ряда распределения предприятий по выпуску продукции: среднюю арифметическую, дисперсию, среднее квадратическое отклонение, коэффициент вариации.

Сделайте вывод.

3. Методом аналитической группировки установите наличие и характер корреляционной связи между стоимостью произведенной продукции и суммой прибыли на одно предприятие.

4. Измерьте тесноту корреляционной связи между стоимостью произведенной продукции и суммой прибыли эмпирическим корреляционным отношением.

Сделайте общие выводы.

Решение:

Построим статистический ряд распределения

Для построения интервального вариационного ряда, характеризующего распределение предприятий по объему выпуска продукции, необходимо вычислить величину и границы интервалов ряда.

При построении ряда с равными интервалами величина интервала h определяется по формуле:

х max и х min – наибольшее и наименьшее значения признака в исследуемой совокупности предприятий;

k - число групп интервального ряда.

Число групп k задано в условии задания. k = 5.

х max = 81 млн. руб., х min = 21 млн. руб.

Расчет величины интервала:

млн. руб.

Путем последовательного прибавления величины интервала h = 12 млн. руб. к нижней границе интервала, получаем следующие группы:

1 группа: 21 – 33 млн. руб.

2 группа: 33 – 45 млн. руб.;

3 группа: 45 – 57 млн. руб.

4 группа: 57 – 69 млн. руб.

5 группа: 69 – 81 млн. руб.

Для построения интервального ряда необходимо подсчитать количество предприятий, входящих в каждую группу (частоты групп ).

Процесс группировки предприятий по объему выпуска продукции представлен во вспомогательной таблице 2. Графа 4 этой таблицы необходима для построения аналитической группировки (пункт 3 задания).

Таблица 2

Таблица для построения интервального ряда распределения и

аналитической группировки

Группы предприятий по объему выпуска продукции, млн. руб. № предприятия Выпуск продукции, млн. руб. Прибыль, млн. руб.
21-33 21,0 2,1
25,0 2,8
28,0 3,0
32,0 4,6
Всего 106,0 12,5
33-45 34,0 3,8
37,0 4,2
39,0 6,5
42,0 4,8
44,0 5,0
Всего 196,0 24,3
45-57 45,0 5,7
46,0 5,5
47,0 5,9
48,0 6,2
49,0 6,1
50,0 5,8
51,0 6,4
52,0 6,5
53,0 6,4
54,0 6,0
55,0 6,3
56,0 7,2
Всего 606,0 74,0
57-69 58,0 8,0
60,0 7,9
61,0 7,6
63,0 6,7
65,0 6,7
68,0 8,5
Всего 375,0 45,4
69-81 72,0 8,2
76,0 9,1
81,0 9,6
Всего 229,0 26,9
Итого 183,1

На основе групповых итоговых строк «Всего» таблицы 3 формируется итоговая таблица 3, представляющая интервальный ряд распределения предприятий по объему выпуска продукции.

Таблица 3

Ряд распределения предприятий по объему выпуска продукции

Вывод. Построенная группировка показывает, что распределение предприятий по объему выпуска продукции не является равномерным. Наиболее часто встречаются предприятии с объемом выпуска продукции от 45 до 57 млн. руб. (12 предприятий). Наименее часто встречаются предприятий с объемом выпуска продукции от 69 до 81 млн. руб. (3 предприятия).

Построим графики ряда распределения.

Полигон чаще используют для изображения дискретных рядов. Для построения полигона в прямоугольной системе координат на оси абсцисс откладывают значения аргумента, т. е. варианты (для интервальных вариационных рядов в качестве аргумента принимают середину интервала) а на оси ординат - значения частот . Далее в этой системе координат строят точки, координатами которых являются пары соответствующих чисел из вариационного ряда. Полученные точки последовательно соединяют отрезками прямой. Полигон представлен на рисунке 1.

Гистограмма – столбиковая диаграмма. Она позволяет оценить симметричность распределения. Гистограмма представлена на рисунке 2.

Рисунок 1 – Полигон распределения предприятий по объему

выпуска продукции

Мода

Рисунок 2 – Гистограмма распределения предприятий по объему

выпуска продукции

Мода – значение признака, которое встречается наиболее часто в исследуемой совокупности.

Для интервального ряда графически моду можно определить по гистограмме (рисунок 2). Для этого выбирается самый высокий прямоугольник, который в данном случае является модальным (45 – 57 млн. руб.). Затем правую вершину модального прямоугольника соединяют с правым верхним углом предыдущего прямоугольника. А левую вершину модального прямоугольника – с левым верхним углом последующего прямоугольника. Далее из точки их пересечения опускают перпендикуляр на ось абсцисс. Абсцисса точки пересечения этих прямых и будет модой распределения.

Млн. руб.

Вывод. В рассматриваемой совокупности предприятий наиболее часто встречаются предприятия с выпуском продукции в 52 млн. руб.

Кумулята – ломаная кривая. Она строится по накопленным частотам (рассчитаны в таблице 4). Кумулята начинается с нижней границы первого интервала (21 млн. руб.), накопленная частота откладывается в верхней границе интервала. Кумулята представлена на рисунке 3.

Медиана

Рисунок 3 - Кумулята распределения предприятий по объему

выпуска продукции

Медиана Ме – это значение признака, приходящееся на середину ранжированного ряда. По обе стороны от медианы находится одинаковое количество единиц совокупности.

В интервальном ряду медиану можно определить графическим методом по кумулятивной кривой. Для определения медианы из точки на шкале накопленных частот, соответствующей 50% (30:2 = 15), проводится прямая, параллельная оси абсцисс, до пересечения с кумулятой. Затем из точки пересечения указанной прямой с кумулятой опускается перпендикуляр на ось абсцисс. Абсцисса точки пересечения является медианой.

Млн. руб.

Вывод. В рассматриваемой совокупности предприятий половина предприятий имеют объем выпуска продукции не более 52 млн. руб., а другая половина – не менее 52 млн. руб.


Похожая информация.


Условие:

Имеются данные о возрастном составе рабочих (лет): 18, 38, 28, 29, 26, 38, 34, 22, 28, 30, 22, 23, 35, 33, 27, 24, 30, 32, 28, 25, 29, 26, 31, 24, 29, 27, 32, 25, 29, 29.

    1. Построить интервальный ряд распределения.
    2. Построить графическое изображение ряда.
    3. Графически определить моду и медиану.

Решение:

1) По формуле Стерджесса совокупность надо разделить на 1 + 3,322 lg 30 = 6 групп.

Максимальный возраст - 38, минимальный - 18.

Ширина интервала Так как концы интервалов должны быть целыми числами, разделим совокупность на 5 групп. Ширина интервала - 4.

Для облегчения подсчетов расположим данные в порядке возрастания: 18, 22, 22, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 28, 29, 29, 29, 29, 29, 30, 30, 31, 32, 32, 33, 34, 35, 38, 38.

Распределение возрастного состава рабочих

Графически ряд можно изобразить в виде гистограммы или полигона. Гистограмма - столбиковая диаграмма. Основание столбика - ширина интервала. Высота столбика равна частоте.

Полигон (или многоугольник распределения) - график частот. Чтобы его построить по гистограмме, соединяем середины верхних сторон прямоугольников. Многоугольник замыкаем на оси Ох на расстояниях, равных половине интервала от крайних значений х.

Мода (Мо) - это величина изучаемого признака, которая в данной совокупности встречается наиболее часто.

Чтобы определить моду по гистограмме, надо выбрать самый высокий прямоугольник, провести линию от правой вершины этого прямоугольника к правому верхнему углу предыдущего прямоугольника, и от левой вершины модального прямоугольника провести линию к левой вершине последующего прямоугольника. От точки пересечения этих линий провести перпендикуляр к оси х. Абсцисса и будет модой. Мо ≈ 27,5. Значит, наиболее часто встречаемый возраст в данной совокупности 27-28 лет.

Медиана (Mе) - это величина изучаемого признака, которая находится в середине упорядоченного вариационного ряда.

Медиану находим по кумуляте. Кумулята - график накопленных частот. Абсциссы - варианты ряда. Ординаты - накопленные частоты.

Для определения медианы по кумуляте находим по оси ординат точку, соответствующую 50% накопленных частот (в нашем случае 15), проводим через неё прямую, параллельно оси Ох, и от точки её пересечения с кумулятой проводим перпендикуляр к оси х. Абсцисса является медианой. Ме ≈ 25,9. Это означает, что половина рабочих в данной совокупности имеет возраст менее 26 лет.

Предмет математической статистики. Генеральная и выборочная совокупность.

— Математическая статистика – раздел математики, который изучает способы отбора, группировки, систематизации и анализа статистических данных, для получения научно обоснованных выводов.

— Статистические данные – числовые значения рассматриваемого признака изучаемых объектов, полученные как результат случайного эксперимента.

Математическая статистика тесно связана с теорией вероятностей, но в отличие от теории вероятностей, математическая модель эксперимента неизвестна. В математической статистике по статистическим данным необходимо установить неизвестное распределение вероятностей или объективно оценить параметры распределения.

Методы математической статистики позволяют строить оптимальные математические модели массовых, повторяющихся явлений. Связующим звеном между теорией вероятностей и математической статистикой являются предельные теоремы теории вероятностей.

В настоящее время статистические методы используются практически во всех отраслях народного хозяйства.

— Генеральная совокупность – статистические данные всех изучаемых объектов (иногда – сами объекты). Часто генеральную совокупность рассматривают как СВ Х.

— Выборка (выборочная совокупность) – статистические данные объектов, выбранных случайно из генеральной совокупности.

— Объём выборки n (объём генеральной совокупности N ) – количество объектов, выбранных для изучения из генеральной совокупности (количество объектов в генеральной совокупности).

Примеры .

а) Статистическими данными могут быть: рост студентов; количество глаголов (или других частей речи) в отрывке текста определённой длины; средний балл аттестата; уровень интеллекта; число ошибок, допущенных диспетчером и т. п.

б) Генеральной совокупностью может быть: рост всех людей, разряды всех рабочих завода, частота употребления определённой части речи во всех произведениях изучаемого автора, средний балл аттестата всех выпускников и т. п.



в)Выборкой может быть: – рост 20 студентов, количество глаголов в выбранных произвольно 50 однородных отрывках текста длиной 500 словоупотреблений, средний балл аттестата 100 выпускников, выбранных случайно из школ города и т.п.

Выборка называется репрезентативной, если она верно отражает свойство генеральной совокупности. Репрезентативность выборки достигается случайностью отбора, когда все объекты генеральной совокупности имеют одинаковую вероятность быть отобранными.

Для того чтобы выборка была репрезентативной применяют различные способы отбора объектов изучения.

Виды отбора : простой, механический, серийный, типический.

Простой . Произвольно отбираются элементы из всей генеральной совокупности.

Механический отбор . Выбирают каждый 10 (25, 30 и т.п.) объект из генеральной совокупности.

Серийный . Проводится исследование в каждой серии (например, из текста выбирают 10 отрывков по 500 словоупотреблений- 10 серий).

Типический . Генеральную совокупность по определённому признаку разделяют на типические группы. Количество серий, извлекаемых из каждой такой группы, определяется удельным весом этой группы в генеральной совокупности.

Статистическое распределение выборки и его графическое изображение.

Пусть изучается СВ Х (генеральная совокупность) относительно некоторого признака. Проводится ряд независимых испытаний. В результате опытов СВ Х принимает некоторые значения. Совокупность полученных значений представляет собой выборку, а сами значения являются статистическими данными.

Первоначально проводят ранжирование выборки - расположение статистических данных выборки по неубыванию. Получаем вариационный ряд.

Вариационный ряд - проранжированная выборка.

Дискретный статистический ряд

Если генеральная совокупность является дискретной СВ, строится дискретный статистический ряд (статистическое распределение).

Пусть значение появилось в выборке раз,

Разa , …, - раз.

I-тая варианта выборки; - частота i-той варианты Частота показывает, сколько раз данная варианта появилась в выборке.

- относительная частота i-той варианты

(показывает какую часть выборки составляет ).

Статистическое распределение – это соответствие между вариантами выборки и их частотами или относительными частотами.

Для ДСВ статистическое распределение можно представить в виде таблицы – статистического ряда частот или статистического ряда относительных частот.

Статистический ряд частот Статистический ряд

относительных частот

........
........
........
........

Для наглядности представления статистического распределения выборки строят «графики» статистического распределения: полигон и гистограмму.

Полигон частот (относительных частот) – графическое изображение дискретного статистического ряда - ломаная линия, последовательно соединяющая точки [ для полигона относительных частот].

Пример. Исследователя интересуют знания абитуриентов по математике. Выбирают 10 абитуриентов и записывают их школьные оценки по этому предмету. Получена следующая выборка: 5;4;4;3;2;5;4;3;4;5.

а) Представить выборку в виде вариационного ряда;

б) построить статистический ряд частот и относительных частот;

в) изобразить полигон относительных частот для полученного ряда.

а) Проведем ранжирование выборки, т.е. расположим члены выборки по неубыванию. Получаем вариационный ряд: 2; 3; 3; 4; 4; 4; 4; 5; 5;5.

б) Построим статистический ряд частот (соответствие между вариантами выборки и их частотами) и статистический ряд относительных частот (соответствие между вариантами выборки и их относительными частотами)

0,1 0,2 0,4 0,3

Статистический ряд частот статистический ряд отн. частот

1+2+4+3=10=n 0,1+0,2+0,4+0,3=1.

Полигон относительных частот.


Практическое занятие 1

ВАРИАЦИОННЫЕ РЯДЫ РАСПРЕДЕЛЕНИЯ

Вариационным рядом или рядом распределения называют упорядоченное распределение единиц совокупности по возрастающим (чаще) или по убывающим (реже) значениям признака и подсчет числа единиц с тем или иным значением признака.

Существует 3 вида ряда распределения:

1) ранжированный ряд – это перечень отдельных единиц совокупности в порядке возрастания изучаемого признака; если численность единиц совокупности достаточно велика ранжированный ряд становится громоздким, и в таких случаях ряд распределения строится с помощью группировки единиц совокупности по значениям изучаемого признака (если признак принимает небольшое число значений, то строится дискретный ряд, а в противном случае – интервальный ряд);

2) дискретный ряд – это таблица, состоящая из двух столбцов (строк) – конкретных значений варьирующего признака X i и числа единиц совокупности с данным значением признака f i – частот; число групп в дискретном ряду определяется числом реально существующих значений варьирующего признака;

3) интервальный ряд – это таблица, состоящая из двух столбцов (строк) – интервалов варьирующего признака X i и числа единиц совокупности, попадающих в данный интервал (частот), или долей этого числа в общей численности совокупностей (частостей).

Числа, показывающие, сколько раз отдельные варианты встречаются в данной совокупности, называются частотами или весами вариант и обозначаются строчной буквой латинского алфавита f . Общая сумма частот вариационного ряда равна объему данной совокупности, т. е.

где k – число групп, n общее число наблюдений, или объем совокупности.

Частоты (веса) выражают не только абсолютными, но и от­носительными числами – в долях единицы или в процентах от общей численности вариант, составляющих данную совокуп­ность. В таких случаях веса называют относительными частотами или частостями. Общая сумма частностей равна единице

или
,

если частоты выражены в про­центах от общего числа наблюдений п. Замена частот частостями не обязательна, но иногда оказывается полезной и даже необхо­димой в тех случаях, когда приходится сопоставлять друг с дру­гом вариационные ряды, сильно отличающиеся по их объемам.

В зависимости от того, как варьирует признак – дискретно или непрерывно, в широком или узком диапазоне, – статистиче­ская совокупность распределяется в безынтервальный или интер­вальный вариационные ряды. В первом случае частоты относятся непосредственно к ранжированным значениям признака, которые приобретают положение отдельных групп или классов вариаци­онного ряда, во втором – подсчитывают частоты, относящиеся к отдельным промежуткам или интервалам (от – до), на которые разбивается общая вариация признака в пределах от минималь­ной до максимальной варианты данной совокупности. Эти проме­жутки, или классовые интервалы, могут быть равными и не рав­ными по ширине. Отсюда различают равно- и неравноинтервальные вариационные ряды. В неравноинтервальных рядах характер распределения час­тот меняется по мере изменения ширины классовых интервалов. Неравноинтервальную группировку в биологии применяют сравнительно редко. Как правило, биометрические данные рас­пределяются в равноинтервальные ряды, что позволяет не только выявлять закономерность варьирования, но и облегчает вычисле­ние сводных числовых характеристик вариационного ряда, сопо­ставление рядов распределения друг с другом.

Приступая к построению равноинтервального вариационного ряда, важно правильно наметить ширину классового интервала. Дело в том, что грубая группировка (когда устанавливают очень широкие классовые интервалы) искажает типичные черты варьи­рования и ведет к снижению точности числовых характеристик ряда. При выборе чрезмерно узких интервалов точность обобщающих числовых характеристик повышается, но ряд получается слишком растянутым и не дает четкой картины варьирования.

Для получения хорошо обозримого вариационного ряда и обеспечения достаточной точности вычисляемых по нему числовых характеристик следует разбить вариацию признака (в пределах от минимальной до максимальной варианты) на такое число групп или классов, которое удовлетворяло бы обоим требо­ваниям. Эту задачу решают делением размаха варьирования признака на число групп или классов, намечаемых при построе­нии вариационного ряда:

,

где h – величина интервала; X м a x и X min – максимальное и минимальное значения в совокупности; k – число групп.

При построении интервального ряда распределения необходимо выбирать оптимальное число групп (интервалов признака) и установливать длину (размах) интервала. Поскольку при анализе ряда распределения сравнивают частоты в разных интервалах, необходимо, чтобы длина интервалов была постоянной. Если приходится иметь дело с интервальным рядом распределения с неравными интервалами, то для сопоставимости нужно частоты или частости привести к единице интервала, полученное значение называется плотностью ρ , то есть
.

Оптимальное число групп выбирается так, чтобы достаточной мере отразилось разнообразие значений признака в совокупности и в то же время закономерность распределении, его форма не искажалась случайными колебаниями частот. Если групп будет слишком мало, не проявится закономерность вариации; если групп будет чрезмерно много, случайные скачки частот исказят форму распределения.

Чаще всего число групп в ряду распределения определяют по формуле Стерждесса:

где n – численность совокупности.

Существенную помощь в анализе ряда распределения и его свойств оказывает графическое изображение. Интервальный ряд изображается столбиковой диаграммой, в которой основания столбиков, расположенные по оси абсцисс, – это интервалы значений варьирующего признака, а высоты столбиков – частоты, соответствующие масштабу по оси ординат. Диаграмма такого типа называется гистограммой.

Если имеется дискретный ряд распределения или используются середины интервалов, то графическое изображение такого ряда называется полигоном , которое получается соединением прямыми точек с координатами X i и f i .

Если по оси абсцисс откладывать значения классов, а по оси ординат – накопленные частоты с последующим соединени­ем точек прямыми линиями, получается график, называемый кумулятой. Накопленные частоты находят последо­вательным суммированием, или кумуляцией частот в направлении от первого класса до конца вариационного ряда.

Пример . Имеются данные о яйценоскости 50 кур-несушек за 1 год, содер­жащихся на птицеферме (табл. 1.1).

Т а б л и ц а 1.1

Яйценоскость кур-несушек

№ курицы-несушки

Яйценоскость, шт.

№ курицы-несушки

Яйценоскость, шт.

№ курицы-несушки

Яйценоскость, шт.

№ курицы-несушки

Яйценоскость, шт.

№ курицы-несушки

Яйценоскость, шт.

Требуется построить интервальный ряд распределения и отобразить его графически в виде гистограммы, полигона и кумуляты.

Видно, что признак варь­ирует от 212 до 245 яиц, полученных от несушки за 1 год.

В нашем примере по формуле Стерждесса определим число групп:

k = 1 + 3,322lg 50 = 6,643 ≈ 7.

Рассчитаем длину (размах) интервала по формуле:

.

Построим интервальный ряд с 7 группами и интервалом 5 шт. яиц (табл. 1.2). Для построения графиков в таблице рассчитаем середину интервалов и накопленную частоту.

Т а б л и ц а 1.2

Интервальный ряд распределения яйценоскости

Группа кур-несушек по величине яйценоскости

X i

Число кур-несушек

f i

Середина интервала

Х i ’

Накопленная частота

f i

Построим гистограмму распределения яйценоскости (рис. 1.1).

Р и с. 1.1. Гистограмма распределения яйценоскости

Данные гистограммы показывают характерную для многих признаков форму распределения: чаще встречаются значения средних интервалов признака, реже – крайние (малые и большие) значения признака. Форма этого распределения близка к нормальному закону распределения, которое образуется, если на варьирующую переменную влияет большое число факторов, ни один из которых не имеет преобладающего значения.

Полигон и кумулята распределения яйценоскости имеют вид (рис. 1.2 и 1.3).

Р и с. 1.2. Полигон распределения яйценоскости

Р и с. 1.3. Кумулята распределения яйценоскости

Технология решения задачи в табличном процессоре Microsoft Excel следующая.

1. Введите исходные данные в соответствии с рис. 1.4.

2. Ранжируйте ряд.

2.1. Выделите ячейки А2:А51.

2.2. Щелкните левой кнопкой мыши на панели инструментов на кнопке <Сортировка по возрастанию > .

3. Определите величину интервала для построения интервального ряд распределения.

3.1. Скопируйте ячейку А2 в ячейку Е53.

3.2. Скопируйте ячейку А51 в ячейку Е54.

3.3. Рассчитайте размах вариации. Для этого введите в ячейку Е55 формулу =E54-E53 .

3.4. Рассчитайте число групп вариации. Для этого введите в ячейку Е56 формулу =1+3,322*LOG10(50) .

3.5. Введите в ячейку Е57 округленное число групп.

3.6. Рассчитайте длину интервала. Для этого введите в ячейку Е58 формулу =E55/E57 .

3.7. Введите в ячейку Е59 округленную длину интервала.

4. Постройте интервальный ряд.

4.1. Скопируйте ячейку Е53 в ячейку В64.

4.2. Введите в ячейку В65 формулу =B64+$E$59 .

4.3. Скопируйте ячейку В65 в ячейки В66:В70.

4.4. Введите в ячейку С64 формулу =B65 .

4.5. Введите в ячейку С65 формулу =C64+$E$59 .

4.6. Скопируйте ячейку С65 в ячейки С66:С70.

Результаты решения выводятся на экран дисплея в следующем виде (рис. 1.5).

5. Рассчитайте частоту интервалов.

5.1. Выполните команду Сервис , Анализ данных , щелкнув поочередно левой кнопкой мыши.

5.2. В диалоговом окне Анализ данных с помощью левой кнопки мыши установите: Инструменты анализа  <Гистограмма> (рис. 1.6).

5.3. Щелкните левой кнопкой мыши на кнопке <ОК>.

5.4. На вкладке Гистограмма установите параметры в соответствии с рис. 1.7.

5.5. Щелкните левой кнопкой мыши на кнопке <ОК>.

Результаты решения выводятся на экран дисплея в следующем виде (рис. 1.8).

6. Заполните таблицу «Интервальный ряд распределения».

6.1. Скопируйте ячейки В74:В80 в ячейки D64:D70.

6.2. Рассчитайте сумму частот. Для этого выделите ячейки D64:D70 и щелкните левой кнопкой мыши на панели инструментов на кнопке <Автосумма > .

6.3. Рассчитайте середину интервалов. Для этого введете в ячейку Е64 формулу =(B64+C64)/2 и скопируйте в ячейки Е65:Е70.

6.4. Рассчитайте накопленные частоты. Для этого скопируйте ячейку D64 в ячейку F64. В ячейку F65 введите формулу =F64+D65 и скопируйте в ячейки F66:F70.

Результаты решения выводятся на экран дисплея в следующем виде (рис. 1.9).

7. Отредактируйте гистограмму.

7.1. Щелкните правой кнопкой мыши на диаграмме на названии «карман» и на появившейся вкладке нажмите кнопку <Очистить>.

7.2. Щелкните правой кнопкой мыши на диаграмме и на появившейся вкладке нажмите кнопку <Исходные данные>.

7.3. В диалоговом окне Исходные данные измените подписи оси Х. Для этого выделите ячейки В64:С70 (рис. 1.10).

7.5. Нажмите клавишу .

Результаты выводятся на экран дисплея в следующем виде (рис. 1.11).

8. Постройте полигон распределения яйценоскости.

8.1. Щелкните левой кнопкой мыши на панели инструментов на кнопке <Мастер диаграмм > .

8.2. В диалоговом окне Мастер диаграмм (шаг 1 из 4) с помощью левой кнопки мыши установите: Стандартные  <График> (рис. 1.12).

8.3. Щелкните левой кнопкой мыши на кнопке <Далее>.

8.4. В диалоговом окне Мастер диаграмм (шаг 2 из 4) установите параметры в соответствии с рис. 1.13.

8.5. Щелкните левой кнопкой мыши на кнопке <Далее>.

8.6. В диалоговом окне Мастер диаграмм (шаг 3 из 4) введите названия диаграммы и ос Y (рис. 1.14).

8.7. Щелкните левой кнопкой мыши на кнопке <Далее>.

8.8. В диалоговом окне Мастер диаграмм (шаг 4 из 4) установите параметры в соответствии с рис. 1.15.

8.9. Щелкните левой кнопкой мыши на кнопке <Готово>.

Результаты выводятся на экран дисплея в следующем виде (рис. 1.16).

9. Вставьте на графике подписи данных.

9.1. Щелкните правой кнопкой мыши на диаграмме и на появившейся вкладке нажмите кнопку <Исходные данные>.

9.2. В диалоговом окне Исходные данные измените подписи оси Х. Для этого выделите ячейки Е64:Е70 (рис. 1.17).

9.3. Нажмите клавишу .

Результаты выводятся на экран дисплея в следующем виде (рис. 1.18).

Кумулята распределения строится аналогично полигону распределения на основе накопленных частот.