Химической и электрохимической коррозии механизм. Электрохимическая коррозия – почему разрушаются металлы? Защита от блуждающих токов

Электрохимическая коррозия - самый распространенный вид коррозии. Электрохимическая возникает при контакте металла с окружающей электролитически проводящей средой. При этом восстановление окислительного компонента коррозионной среды протекает не одновременно с ионизацией атомов металла и от электродного потенциала металла зависят их скорости. Первопричиной электрохимической коррозии является термодинамическая неустойчивость металлов в окружающих их средах. Ржавление трубопровода, обивки днища морского суда, различных металлоконструкций в атмосфере - это, и многое другое, примеры электрохимической коррозии.

К электрохимической коррозии относятся такие виды местных разрушений, как питтинги , межкристаллитная коррозия , щелевая . Кроме того процессы электрохимической коррозии происходят в грунте , атмосфере , море .

Механизм электрохимической коррозии может протекать по двум вариантам:

1) Гомогенный механизм электрохимической коррозии:

Поверхностный слой мет. рассматривается как гомогенный и однородный;

Причиной растворения металла является термодинамическая возможность протекания катодного или же анодного актов;

К и А участки мигрируют по поверхности во времени;

Скорость протекания электрохимической коррозии зависит от кинетического фактора (времени);

Однородную поверхность можно рассматривать как предельный случай, который может быть реализован и в жидких металлах.

2) Гетерогенный механизм электрохимической коррозии:

У твердых металлов поверхность негомогенная, т.к. разные атомы занимают в сплаве различные положения в кристаллической решетке;

Гетерогенность наблюдается при наличии в сплаве инородных включений.

Электрохимическая коррозия имеет некоторые особенности: делится на два одновременно протекающих процесса (катодный и анодный), которые кинетически зависимы друг от друга; на некоторых участках поверхности электрохимическая коррозия может принять локальный характер; растворение основного мет. происходит именно на анодах.

Поверхность любого металла состоит из множества короткозамкнутых через сам металл микроэлектродов. Контактируя с коррозионной средой образующиеся гальванические элементы способствуют электрохимическому его разрушению.

Причины возникновения местных гальванических элементов могут быть самые разные:

1) неоднородность сплава

Неоднородность мет. фазы, обусловленная неоднородностью сплава и наличием микро- и макровключений;

Неравномерность окисных пленок на поверхности за счет наличия макро- и микропор, а также неравномерного образования вторичных продуктов коррозии;

Наличие на поверхности границ зерен кристаллов, выхода дислокации на поверхность, анизотропность кристаллов.

2) неоднородность среды

Область с ограниченным доступом окислителя будет анодом по отношению к области со свободным доступом, что ускоряет электрохимическую коррозию.

3) неоднородность физических условий

Облучение (облученный участок - анод);

Воздействие внешних токов (место входа блуждающего тока - катод, место выхода - анод);

Температура (по отношению к холодным участкам, нагретые являются анодами) и т. д.

При работе гальванического элемента одновременно протекает два электродных процесса:

Анодный - ионы металла переходят в раствор

Fe → Fe 2+ + 2e

Происходит реакция окисления.

Катодный - избыточные электроны ассимилируются молекулами или атомами электролита, которые при этом восстанавливаются. На катоде проходит реакция восстановления.

O 2 + 2H 2 O + 4e → 4OH - (кислородная деполяризация в нейтральных, щелочных средах)

O 2 + 4H + + 4e → 2H 2 O (кислородная деполяризация в кислых средах)

2 H + + 2e → H 2 (при водородной деполяризации).

Торможение анодного процесса приводит к торможению и катодного.

Коррозия металла происходит именно на аноде.

При соприкосновении двух электропроводящих фаз (например, мет. - среда), когда одна из них заряжена положительно, а другая отрицательно, между ними возникает разность потенциала. Это явление связано с возникновением двойного электрического слоя (ДЭС). Заряженные частицы располагаются несимметрично на границе раздела фаз.

Скачек потенциалов в процессе электрохимической коррозии может происходить из-за двух причин:

При достаточно большой энергии гидратации ионы металла могут отрываться и переходить в раствор, оставляя на поверхности эквивалентное число электронов, которые определяют ее отрицательный заряд. Отрицательно заряженная поверхность притягивает к себе катионы мет. из раствора. Так на границе раздела фаз возникает двойной электрический слой.

На поверхности металла разряжаются катионы электролита. Это приводит к тому, что поверхность мет. приобретает положительный заряд, который с анионами раствора образует двойной электрический слой.

Иногда возникает ситуация, когда поверхность не заряжена и, соответственно, отсутствует ДЭС. Потенциал, при котором это явление наблюдается называется потенциалом нулевого заряда (φ N). У каждого металла потенциал нулевого заряда свой.

Величина электродных потенциалов оказывает очень большое влияние на характер коррозионного процесса.

Скачок потенциала между двух фаз не может быть измерен, но при помощи компенсационного метода можно измерить электродвижущую силу элемента (ЭДС), который состоит из электрода сравнения (его потенциал условно принят за ноль) и исследуемого электрода. В качестве электрода сравнения берется стандартный водородный электрод. ЭДС гальванического элемента (стандартный водородный электрод и исследуемый элемент) называют электродным потенциалом. Электродами сравнения могут также выступать хлорсеребряный, каломельный, насыщенный медно-сульфатный.

Международной конвенцией в Стокгольме 1953г. решено при записях электрод сравнения всегда ставить слева. При этом ЭДС рассчитывать, как разность потенциалов правого и левого электродов.

E = Vп - Vл

Если положительный заряд внутри системы движется слева направо - ЭДС элемента считается положительной, при этом

E max =-(ΔG T)/mnF,

где F - число Фарадея. Если положительные заряды будут двигаться в противоположном направлении, то уравнение будет иметь вид:

E max =+(ΔG T)/mnF.

При коррозии в электролитах самыми распространенными и значимыми являются адсорбционные (адсорбция катионов или анионов на границе раздела фаз) и электродные потенциалы (переход катионов из металла в электролит или наоборот).

Электродный потенциал, при котором металл находится в состоянии равновесия с собственными ионами называется равновесный (обратимый). Он зависит от природы металлической фазы, растворителя, температуры электролита, активности ионов мет.

Равновесный потенциал подчиняется уравнению Нернста:

E=E ο + (RT/nF) Lnα Me n+

где, E ο - стандартный потенциал мет.; R - молярная газовая постоянная; n - степень окисления иона мет.; Т - температура; F - число Фарадея;α Me n+ - активность ионов мет.

При установленном равновесном потенциале электрохимическая коррозия не наблюдается.

Если по электроду проходит электрический ток - равновесное состояние его нарушается. Потенциал электрода изменяется в зависимости от направления и силы тока. Изменение разности потенц., приводящее к уменьшению силы тока, принято называть поляризацией. Уменьшение поляризуемости электродов называют деполяризацией.

Скорость электрохимической коррозии тем меньше, чем больше поляризация. Поляризация характеризуется величиной перенапряжения.

Поляризация бывает трех типов:

Электрохимическая (при замедлении анодного или катодного процессов);

Концентрационная (наблюдается, когда скорость подхода деполяризатора к поверхности и отвода продуктов коррозии мала);

Фазовая (связана с образованием на поверхности новой фазы).

Электрохимическая коррозия наблюдается также при контакте двух разнородных металлов. В электролите они образуют гальванопару. Более электроотрицательный из них будет анодом. Анод в процессе будет постепенно растворяться. При этом идет замедление или даже полное прекращение электрохимической коррозии на катоде (более электроположительном). Например, при контакте в морской воде дюралюминия с никелем интенсивно растворятся будет именно дюралюминий.

Электрохимическая коррозия представляет собой процесс разрушения металла в результате воздействия на него гальванических элементов, образование которых становится возможным в коррозионной среде.

1

Обычно под коррозией металла понимают его окисление под влиянием кислот, которые присутствуют в растворах, контактирующих с металлическим изделием, либо кислорода воздуха. Коррозия наиболее часто поражает металлы, находящиеся левее водорода в так называемом ряду напряжений. Впрочем, коррозионному разрушению подвержены и многие другие материалы (неметаллические), например строительный бетон.

Коррозия возникает в результате какого-либо электрохимического или химического процесса. По этой причине ее принято подразделять на электрохимическую и химическую.

Коррозия приводит к различным разрушениям материала, которые могут быть:

  • неравномерными и равномерными;
  • местными и сплошными.

Если металл испытывает механические напряжения в дополнение к негативному влиянию внешней среды, наблюдается активизация (и существенная) всех коррозионных проявлений, что вызвано разрушением на поверхности изделий оксидных пленок и уменьшением показателя термоустойчивости материала.

Стоит сказать, что в некоторых случаях коррозионные процессы вызывают восстановление, а не окисление компонентов, входящих в различные металлические сплавы. Ярким примером этого является восстановление водородом содержащихся во многих сталях карбидов (такой нестандартный процесс происходит при высоких температурах и давлениях).

2

Такая коррозия признается наиболее распространенной. Появляется она в том случае, когда среда, характеризуемая электролитической проводимостью, взаимодействует с металлом. Другими словами, ее первопричиной можно смело называть неустойчивость (термодинамическую) металлов в средах, где они находятся. Известные любому человеку примеры такой коррозии – ржавление на открытом воздухе конструкций и изделий из чугуна и разных марок стали ( , и так далее), днищ судов в морской воде, инженерных коммуникаций и трубопроводов, по которым транспортируются разнообразные жидкости и агрессивные составы.

Коррозионный элемент (его обычно называют гальваническим) образуется тогда, когда два металла, имеющие разные потенциалы (окислительно-восстановительные), соприкасаются. Такой элемент – это обычная гальваническая ячейка замкнутого типа. В указанной ячейке металл с меньшим потенциалом медленно растворяется, а второй компонент (с большим потенциалом) обычно не изменяет своего состояния.

Подобным изменениям чаще всего подвергаются металлы, у которых величина отрицательного потенциала высока. В них процесс ржавления (формирования коррозионного компонента) начинается уже тогда, когда на поверхность попадает малый объем постороннего включения.

3

Описанные гальванические элементы образуются по разным причинам. Прежде всего, они могут формироваться из-за неоднородности сплава, что приводит к:

  • неравномерности распределения пленок оксидов на поверхности материала;
  • неоднородности металлической фазы;
  • присутствию кристаллов на границах зерен;
  • различиям в процессе формирования вторичных продуктов ржавления;
  • анизотропности кристаллов.

Также гальванические ячейки возникают в силу следующих причин:

  • неоднородности температуры, влияний внешних токов и облучения;
  • наличия зон, в которые окислитель поступает ограниченно.

Всегда нужно помнить о том, что электрохимическое ржавление подразумевает протекание в один и тот же момент времени двух процессов – анодного и катодного. С точки зрения кинетики они напрямую связаны между собой. Основной металл всегда растворяется на аноде (окислительная реакция).

Под катодным процессом понимают ситуацию, когда "лишние" электроны поглощаются атомами либо молекулами электролита. После чего происходит восстановление электронов. Катодный процесс замедляется, если отмечается замедление анодного процесса. Как видим, механизм электрохимической коррозии совсем несложен для понимания. Разобраться с ним может любой человек.

4

Под таким явлением понимают разрушение металла, вызываемое контактом коррозионной среды и материала. Причем при подобном взаимодействии наблюдается сразу два процесса:

  • коррозионная среда восстанавливается;
  • металл окисляется.

Электрохимическая коррозия металлов отличается от химической тем, что последняя протекает без электротока. А первопричина этих видов коррозии, коей является термодинамическая неустойчивость, остается неизменной. Металлы легко переходят в разные состояния (включая и более устойчивые), причем в этом случае отмечается снижение их термодинамического потенциала.

К жидкостям-неэлектролитам относят составы неспособные проводить электроток:

  • неорганические: сера в расплавленном состоянии, жидкий бром;
  • органические: бензин, керосин, хлороформ и иные.

Неэлектролиты в чистом виде с металлами не контактируют. Но при появлении в жидкостях совсем малого числа примесей сразу же "стартует" химическая коррозия металлов (причем весьма бурная). В тех ситуациях, когда реакция проходит еще и при повышенных температурах, ржавление будет происходить намного интенсивнее. А если в неэлектролитические жидкости попадает вода, запускается механизм электрохимической коррозии, описанный нами выше.

Процесс ржавления (химического) чаще всего идет в пять этапов:

  • сначала к поверхности металла подходит окислитель;
  • на поверхности стартует хемосорбция реагента;
  • после этого начинает формироваться оксидная пленка (взаимодействие металла и окислителя);
  • отмечается десорбция материала и оксидов;
  • фиксируется диффузия в жидкость-неэлектролит оксидов.

Два этапа, указанные последними, отмечаются не каждый раз.

5

Под воздействием газов металлические поверхности могут разрушаться в том случае, когда имеется высокая температура. Данное явление специалисты именуют газовой коррозией, которая признается самым распространенным вариантом химического ржавления. Известная всем вариация подобного процесса – контакт кислорода и металлической поверхности, которая характеризуется двумя показателями:

  • давлением при конкретной температуре диссоциации оксидных паров;
  • давлением (парциальным) кислорода.

Если давление кислорода меньше давления диссоциации, появляется чистый металл, если больше – образуется окисел. При равных величинах реакция будет полностью равновесной. Учитывая это, можно без труда рассчитать, при каких температурах возникнет опасность коррозии.

Химическая коррозия протекает с разной скоростью. Конкретная величина последней находится в зависимости от далее приведенных факторов:

  • свойства продуктов коррозии;
  • особенности газовой среды;
  • температура;
  • время, на протяжении коего отмечается взаимодействие металла со средой;
  • виды и состав сплавов либо особенности металла.

Химическая коррозия

Внешние факторы газовой коррозии. Газовая коррозия является частным случаем химической коррозии и возможна только в условиях, исключающих протекание электрохимических процессов. Характерной особенностью газовой коррозии является отсутствие на поверхности металла влаги. Поэтому в большинстве случаев речь идет о коррозии при повышенной температуре, при которой вода находится в газовой фазе. Однако, исходя из определения, можно представить себе газовую коррозию и при комнатной температуре, но в условиях высокой степени сухости, естественной или создаваемой искусственно. Так, при осушении силикагелем до точки росы – 30 °С влагоемкость воздуха составит 0,333 г/м 3 . При + 20 °С это соответствует влажности воздуха всего лишь 2 % . В таких усло-

виях протекание электрохимической коррозии практически исключается. В промышленности случаи газовой коррозии встречаются достаточно часто - от разрушения деталей, нагревательных печей до коррозии металла в процессе его термической обработки.

На скорость газовой коррозии влияет целый ряд факторов, и прежде всего такие, как температура и состав газовой среды.

Повышение температуры заметно увеличивает скорость коррозии. В первом приближении эта связь может быть описа-

на известным из физической химии уравнением Аррениуса

ln K = A -

где К - скорость реакции; А и В - константы; Т - абсолютная температура (°К) .

Из уравнения следует, что логарифм скорости коррозии ли­нейно связан с величиной, обратной абсолютной температуре. Эта зависимость в некоторых случаях (например, для меди в интервале температуры 700 – 900 °С ) полностью подтвержда­ется, но чаще она носит более сложный характер, что связано с влиянием вторичных реакций, природой и свойствами продук­тов коррозии и др.

В среде чистого воздуха коррозия сводится к взаимодействию металла с кислородом. Железо уже при температуре 300 °С покрывается на воздухе окалиной, т. е. окисной пленкой, различимой невооруженным глазом. В состав окалины входит магнетит F 3 O 4 и гематит Fe 2 O 3 . С ростом температуры, вплоть до 575 °С , скорость коррозии остается примерно постоянной, но, начиная с 575 0 С , резко увеличивается. Этот факт связывают с появлением на границе металл - окалина вюстита (окиси же­леза FеО ).

На поверхности углеродистой стали в процессе коррозии па­раллельно протекают две группы реакций: окисление железа до окислов с образованием окалины и реакции обезуглероживания c участием карбида железа (цементита) по следующему уравнению:

Fe 3 C + O 2 → 3Fe + CO 2 .

Таким образом, поверхностный слой металла обедняется це­ментитом. При длительном нагреве глубина обезуглероженного слоя может составлять несколько миллиметров. Это заметно влияет на свойства металла, и прежде всего на его твердость и прочность. Обезуглероживание наблюдается и при наличии в газовой среде углекислого газа, паров воды или других окис­лителей и протекает по аналогичным реакциям:

Fe 3 C + СО 2 → 3Fе + 2СО,

Fe 3 C + Н 2 O → 3Fe + СО + Н 2 .

Повышение давления газа при прочих равных условиях так­же сильно ускоряет газовую коррозию.

Специфично влияет на коррозионную стойкость стали водо­род, вызывая при повышенной температуре и давлении так на­зываемую водородную хрупкость, т. е. резкое снижение проч­ности. Водородная хрупкость объясняется не только обезугле­роживанием стали за счет восстановления цементита водородом, но и такими явлениями, как молизация атомарного водорода, находящегося в кристаллической решетке стали, и образование по границам зерен металла паров воды и метана. Каждый из процессов приводит к генерированию газа, создающего в замкнутом объеме металла колоссальное давление. Это в свою очередь вызывает появление многочисленных микротрещин, понижающих прочность металла.

Газовой коррозии сильно подвержены и многие цветные

металлы, хотя каждый из них относится к тем или иным газам поразному. Это можно проиллюстрировать данными табл. 2, в которой скорость коррозии металлов для наглядности дана в относительных единицах, при этом скорость коррозии железа в кислороде принята за 100.

Табл. 9 убедительно демонстрирует влияние природы ме­талла на скорость коррозии. Например, если при переходе от кислорода к парам воды коррозия вольфрама замедляется примерно в 20 раз, а меди - в 3,5 раза, то скорость коррозии железа при этом, наоборот, увеличивается.

Таблица 9

Газовая коррозия ряда металлов в некоторых средах

(температура 800 °С , продолжительность 24 ч )

Окисные пленки. Существенное влияние на скорость газовой коррозии ока­зывают образующиеся продукты коррозии, их физико - химические и механические свойства. В большинстве случаев корро­зия протекает в окислительной среде; при этом на поверхности металла в качестве продукта коррозии образуется окисная пленка. Впрочем, тонкая окисная пленка на металле обычно появляется уже при комнатной температуре. Свойства обра­зующейся окисной пленки решающим образом влияют на дальнейший ход коррозионного процесса. В случае резкого торможения процесса вплоть до полного прекращения корро­зии говорят о наступившей пассивности поверхности металла.

Термодинамика газовой коррозии. Термодинамическая возможность процесса газовой коррозии с образованием окисной пленки определяется величиной изменения свободной энергии системы. Существует удобная форма определения тер­модинамической возможности протекания коррозии за счет окисления металла, которая сводится к сравнению упругости диссоциации полученного продукта реакции окисления с парциальным давлением кислорода в газовой фазе.

Действительно, если парциальное давление кислорода Р O и упругость диссоциации окисла Р MeO в реакции окисления металла mМе + nO 2 Ме m O 2 n будут равны, то реакция будет находиться в равновесии. Если Р O > Р MeO , то реакция протекает слева направо в сторону образования окисла. Если Р O < Р MeO , то окисел самопроизвольно диссоциирует на кислород и металл. Поэтому сравнение упругости диссоциации данного окисла при данной температуре, например, с парциальным давлением кислорода воздуха (Р O 0,2 ат при атмосферном давлении) позволяет найти границу термодинами

ческой вероятности процесса окисления металла на воздухе. Так, судя по данным табл. 10, серебро уже при 400 °К не способно окисляться. Для меди эта граница лежит в области 2000 °К .

Таблица 10

Упругость диссоциации окислов серебра и меди

в зависимости от температуры

Процесс 300 0 К 400 0 К 500 0 К 800 0 К 1200 0 К 1600 0 К
Ag 2 O 2Ag + O 2 8,4 ∙ 10 -5 6,9 ∙ 10 -1 - - -
Cu 2 O 2Cu + O 2 - - 0,56 ∙ 10 - 30 3,7 ∙ 10 - 16 2 ∙ 10 - 8 1,8 ∙ 10 - 4

Свойства окисных пленок. В зависимости от условий образования окисные пленки могут иметь толщину от мономолекулярной до нескольких миллиметров. Различаются тонкие, средние и толстые пленки. Тонкие пленки имеют толщину от нескольких ангстрем до 400 Å . Они невидимы и могут быть обнаружены и измерены так называемым оптическим методом отражения поляризованного света.

Средние пленки имеют толщину 400 - 5000 Å и видны невоо­руженным глазом благодаря возникновению цветов побежа­лости (явление интерференции света, известное из физики). Их толщина может быть измерена различными методами, среди которых наиболее доступные гравиметрический (весо­вой) и электрометрический (метод катодного восстановления).

Пленки толщиной выше 5000 Å (т. е. толще 0,5 мк ) опреде­ляются весовым методом или методом катодного восстановле­ния, а также с помощью микроскопа, микрометра или других аналогичных мерительных инструментов. Обычно они легко обнаруживаются невооруженным глазом.

Следует отметить, что при изучении фазового состава и

структуры окисных пленок широко используются электронно-микроскопический, электронно-графический и рентгенографиче­ский методы исследования.

В табл. 11 даны примеры окисных пленок на железе. Обра­щает на себя внимание четкая зависимость толщины пленки от условий ее образования, а также сам диапазон толщины - от 15 Å до 0,6 мм .

Было бы ошибочным считать, что чем толще окисная плен­ка, тем она надежнее защищает металл от коррозии. В дейст­вительности дело обстоит скорее наоборот, а именно лучшими защитными свойствами обладают тонкие пленки. Однако тол­щина пленки, строго говоря, не является все же критерием защитной способности.

Чтобы окисная пленка обладала защитными свойствами, она должна быть прежде всего сплошной, беспористой. Усло­вие сплошности окисной пленки было сформулировано Пиллингом и Бедворсом: если объем окисла металла меньше, чем объем металла, из которого пленка образовалась, то пленка

образуется несплошной; если объем окисла металла больше, чем объем металла, то пленка может быть беспористой, ком­пактной.

Сказанное можно пояснить следующими неравенствами:

< 1 пленка не может быть сплошной; при > 1 пленка может быть сплошной.

В свою очередь

V Me = и V Me O = ,

где А - атомный вес металла (т. е. рассматривается грамм - атом металла); - плотность металла; М - молекулярный вес

окиси металла; n - число атомов металла в молекуле окиси; D - плотность окиси.

Таблица 11

Толщина окисной пленки на железе

в зависимости от условий

Условие сплошности является необходимым и существен­ным, но не единственным для характеристики защитных

свойств окисной пленки. При слишком больших значениях V Ме O / V Ме плёнка испытывает столь высокие внутренние на­пряжения, что разрушается, теряя сплошность. Например, при отношении V WO / V W = 3,35 окисная пленка вольфрама имеет весьма слабые защитные свойства.

Пленка должна иметь хорошее сцепление с металлом, должна быть достаточно прочной и эластичной. Коэффициенты теплового расширения пленки и металла должны быть доста­точно близки. Наконец, пленка должна быть химически стой­кой в условиях воздействия на нее коррозионной среды.

Важным условием является и необходимость ориентаци-

онного соответствия образующейся пленки металлу. Сущность ориентационного соответствия сводится к требованию макси­мального сходства кристаллических решеток металла и обра­зующегося окисла при минимальном смещении атомов. Чаще всего при наличии кристаллической структуры окисла, близкой структуре металла, защитные свойства такой пленки лучше, чем неориентированного по отношению к металлу окисла.

Законы роста окисных пленок. Если в результате коррозии образуется несплошная окисная пленка, кислород получает свободный доступ к поверхности металла. В этом случае ско­рость коррозии должна быть величиной постоянной:

где y - толщина окисной пленки. После интегрирования по­лучим уравнение

y = k + А,

выражающее линейную зависимость толщины пленки от времени. Постоянная А указывает на наличие некоторой окис­ной пленки к моменту начала окисления (у = А при = 0 ). Как следует из уравнения, скорость роста пленки в этом случае не зависит от ее толщины. Коррозия может протекать с постоянной скоростью вплоть до полного превращения металла в окисел, как это имеет место при окислении магния в среде кислорода.

Однако нередко фактическая скорость окисления, сохраняя постоянство, оказывается ниже теоретической скорости хими­ческой реакции окисления металла. Это несоответствие объяс­няется наличием на границе раздела металл - окисел металла тончайшей, вплоть до нескольких мономолекулярных слоев, сплошной пленки псевдоморфного окисла. Псевдоморфный окисел обладает высокой степенью ориентационного соответст­вия металлу и является, таким образом, своеобразным крис­таллографическим продолжением решетки окисляемого метал­ла, отличаясь в то же время по параметрам от решетки окисла металла. Будучи беспористым, он затрудняет проник­новение кислорода к поверхности металла.

Таким образом, даже в случае образования на металле толстой и рыхлой окисной пленки скорость коррозии в конеч­ном итоге будет лимитироваться не скоростью реакции окис­ления, а скоростью диффузии кислорода сквозь компактный псевдоморфный окисел.

Если в процессе коррозии образуется окисел, обладающий достаточно хорошими защитными свойствами, то скорость коррозии будет зависеть от соотношения скоростей взаимной диффузии сквозь пленку атомов кислорода к поверхности ме­талла и атомов металла к поверхности раздела фаз окисел - газ. Можно показать, что в этом случае по мере роста толщи­ны пленки скорость коррозии будет замедляться по уравне­нию

После интегрирования и объединения констант получаем параболическую зависимость толщины окисной пленки от продолжительности коррозии:

y 2 = k + А.

Такая зависимость наблюдается при окислении меди, нике­ля, вольфрама. Имея параболическую кривую зависимости коррозии от времени, можно определить скорость коррозии в любой точке кривой. Она будет выражаться как тангенс угла наклона касательной, проходящей через данную точку, так как

tg = .

Наконец, в некоторых условиях торможение скорости окисления металла с ростом толщины окисной пленки происходит более интенсивно, чем этого требует параболический закон. В этих случаях скорость окисления связана с толщиной плен­ки экспоненциальной зависимостью

После интегрирования приходим к логарифмическому урав­нению

у = ln (k ).

Логарифмический закон роста пленки имеет экспериментальное подтверждение при окислении на воздухе алюминия и цинка в интервале температуры 20 – 255 °C , меди - до 100 °С , железа до 385 °С .

Важно подчеркнуть, что закономерности роста пленки на металле могут меняться в зависимости от условий. Так, окис­ление железа при температуре ниже 385 °С подчиняется логарифмическому закону, в области выше этой температуры и до 1000 °С - параболическому, а при давлении кислорода ниже 1 мм рт. ст. и температуре 700 - 950 °С - линейному.

Разрушение пленок. В процессе роста окисной пленки в ней возникают значительные внутренние напряжения. Поэтому, если образующаяся пленка недостаточно прочна или име­ет слабое сцепление с металлом, или слишком неэластична, или по другим причинам, затронутым выше (например, разли­чие коэффициентов температурного расширения металла и пленки), она разрушается. Характер разрушения связан с причиной, вызвавшей его. Если прочность пленки велика, а сцепление с металлом недостаточно хорошее, образуются пузыри. Крупные пузыри приводят обычно к разрывам (рис. 68, а ), и защитные

а б в г д

Рис 68. Виды разрушения окисных пленок.

а - пузырь с разрывом; б - микропузыри в слое окисла (вакуумная пористость); в - отслаивание; г - растрескивание при

сдвиге; д - растрескивание на углах и реб­рах.

свойства пленки резко снижаются. В других случаях образуются мелкие пузыри в слое окисла (рис. 68, б ), и тогда защитные свойства пленки могут даже возрасти, так как подобная «вакуумная пористость» препятст­вует диффузии реагирующих атомов или ионов и таким обра­зом тормозит процесс коррозии. Может наблюдаться отслаи­вание окисла (рис. 68, в ), а также растрескивание на поверхности (рис. 68, г ) или на углах и ребрах (рис. 68, д ).

Методы защиты от газовой коррозии. Основной метод защиты от газовой коррозии сводится к применению легированных сплавов, обладающих так назы­ваемой жаростойкостью. Для снижения скорости окисления железа при 900 °С вдвое достаточно ввести 3,5 % алюминия, а вчетверо - около 5,5 % . Концентрация легирующего компо­нента может быть ничтожной. Так, расплавленный магний настолько энергично окисляется на воздухе, что способен самовозгораться. Однако при введении всего лишь 0,001 % бе­риллия скорость окисления магния резко снижается.

Действие легирующих элементов объясняется образовани­ем на поверхности металла защитных пленок. Они или образу­ются только из легирующего компонента, или состоят из смешанных окислов легирующего компонента и основного ме­талла. Наилучшими защитными свойствами обладают окислы типа шпинелей. Шпинельная структура окисла характеризу­ется высокой степенью компактности ионов в решетке и прак­тическим отсутствием вакантных узлов; это и обусловливает их высокую термодинамическую стабильность. Примером шпинелей являются окислы FeO ∙ Сr 2 О 3 на поверхности хромистой стали или NiO ∙ Сr 2 О 3 на поверхности хромо - никелевой стали.

Второй метод борьбы с газовой коррозией - применение защитной атмосферы. В зависимости от природы металла га­зовая среда не должна содержать окислителей (для стали) или, наоборот, восстановителей (для меди). В ряде случаев применяются инертные газы - азот, аргон. На практике этот метод встречается только в специальных случаях: при термо­обработке и сварке. Так, отжиг стали проводят в атмосфере, содержащей смесь азота, водорода и окиси углерода. Сварка алюминиево-магниевых и титановых деталей протекает ус­пешно в атмосфере аргона.

Третий метод снижения скорости газовой коррозии - защита поверхности металла специальными жаростойкими по

крытиями. В одних случаях поверхность, например стальной детали покрывают термодиффузионным способом сплавом железо - алюминий или железо - хром. Оба сплава обладают высокими защитными свойствами, а сам процесс на­зывается

соответственно алитированием и термохромированием. В других случаях поверхность защищают слоем кермета - смесью металла с окислами. Керамико - металлические покры­тия (керметы) интересны тем, что сочетают тугоплавкость, твердость и жаростойкость керамики с пластичностью и про­водимостью металла. В качестве неметаллической составляю­щей используют тугоплавкие окислы Al 2 O 3 , MgO и соединения - типа карбидов и нитридов. Металлическим компонентом слу­жат металлы группы железа, а также хром, вольфрам, молиб­ден.

Химическая коррозия - это процесс, состоящий в разрушении металла при взаимодействии с агрессивной внешней средой. Химическая разновидность коррозийных процессов не имеет связи с воздействием электрического тока. При этом виде коррозии происходит окислительная реакция, где разрушаемый материал - одновременно восстановитель элементов среды.

Классификация разновидности агрессивной среды включает два вида разрушения металла:

  • химическая коррозия в жидкостях-неэлектролитах;
  • химическая газовая коррозия.

Газовая коррозия

Самая частая разновидность химической коррозии - газовая - представляет собой коррозийный процесс, происходящий в газах при повышенных температурах. Указанная проблема характерна для работы многих типов технологического оборудования и деталей (арматуры печей, двигателей, турбин и т.д.). Кроме того, сверхвысокие температуры используются при обработке металлов под высоким давлением (нагревание перед прокаткой, штамповкой, ковкой, термическими процессами и т.д.).

Особенности состояния металлов при повышенных температурах обуславливаются двумя их свойствами - жаропрочностью и жаростойкостью. Жаропрочность - это степень устойчивости механических свойств металла при сверхвысоких температурах. Под устойчивостью механических свойств понимается сохранение прочности в течение продолжительного времени и сопротивляемость ползучести. Жаростойкость - это устойчивость металла к коррозионной активности газов в условиях повышенных температур.

Скорость развития газовой коррозии обуславливается рядом показателей, в числе которых:

  • температура атмосферы;
  • компоненты, входящие в металл или сплав;
  • параметры среды, где находятся газы;
  • продолжительность контактирования с газовой средой;
  • свойства коррозийных продуктов.

На коррозийный процесс больше влияние оказывают свойства и параметры оксидной пленки, появившейся на металлической поверхности. Образование окисла можно хронологически разделить на два этапа:

  • адсорбция кислородных молекул на металлической поверхности, взаимодействующей с атмосферой;
  • контактирование металлической поверхности с газом, в результате чего возникает химическое соединение.

Первый этап характеризуется появлением ионной связи, как следствие взаимодействия кислорода и поверхностных атомов, когда кислородный атом отбирает пару электроном у металла. Возникшая связь отличается исключительной силой - она больше, нежели связь кислорода с металлом в окисле.

Объяснение такой связи кроется в действии атомного поля на кислород. Как только поверхность металла наполняется окислителем (а это происходит очень быстро), в условиях низких температур, благодаря силе Ван-дер-Ваальса, начинается адсорбция окислительных молекул. Результат реакции - возникновение тончайшей мономолекулярной пленки, которая с течением времени становится толще, что усложняет доступ кислорода.

На втором этапе происходит химическая реакция, в ходе которой окислительный элемент среды отбирает у металла валентные электроны. Химическая коррозия - конечный результат реакции.

Характеристики оксидной пленки

Классификация оксидных пленок включает их три разновидности:

  • тонкие (незаметны без специальных приборов);
  • средние (цвета побежалости);
  • толстые (видны невооруженным взглядом).

Появившаяся оксидная пленка имеет защитные возможности - она замедляет или даже полностью угнетает развитие химической коррозии. Также наличие оксидной пленки повышает жаростойкость металла.

Однако, действительно эффективная пленка должна отвечать ряду характеристик:

  • быть не пористой;
  • иметь сплошную структуру;
  • обладать хорошими адгезивными свойствами;
  • отличаться химической инертностью в отношении с атмосферой;
  • быть твердой и устойчивой к износу.

Одно из указанных выше условий - сплошная структура имеет особенно важное значение. Условие сплошности - превышение объема молекул оксидной пленки над объемом атомов металла. Сплошность - это возможность окисла накрыть сплошным слоем всю металлическую поверхность. При несоблюдении этого условия, пленка не может считаться защитной. Однако, из этого правила имеются исключения: для некоторых металлов, например, для магния и элементов щелочно-земельной групп (исключая бериллий), сплошность не относится к критически важным показателям.

Чтобы установить толщину оксидной пленки, используются несколько методик. Защитные качества пленки можно выяснить в момент ее образования. Для этого изучаются скорость окисления металла, и параметры изменения скорости во времени.

Для уже сформированного окисла применяется другой метод, состоящий в исследовании толщины и защитных характеристик пленки. Для этого на поверхность накладывается реагент. Далее специалисты фиксируют время, которое понадобится на проникновение реагента, и на основании полученных данных делают вывод о толщине пленки.

Обратите внимание! Даже окончательно сформировавшаяся оксидная пленка продолжает взаимодействовать с окислительной средой и металлом.

Скорость развития коррозии

Интенсивность, с какой развивается химическая коррозия, зависит от температурного режима. При высокой температуре окислительные процессы развиваются стремительнее. Причем снижение роли термодинамического фактора протекания реакции не влияет на процесс.

Немалое значение имеет охлаждение и переменный нагрев. Из-за термических напряжений в оксидной пленке появляются трещины. Через прорехи окислительный элемент попадает на поверхность. В результате образуется новый слой оксидной пленки, а прежний - отслаивается.

Не последнюю роль играют и компоненты газовой среды. Этот фактор индивидуален для разных видов металлов и согласуется с температурными колебаниями. К примеру, медь быстро поддается коррозии, если она контактирует с кислородом, но отличается устойчивостью к этому процессу в среде оксида серы. Для никеля же напротив, серный оксид губителен, а устойчивость наблюдается в кислороде, диоксиде углерода и водной среде. А вот хром проявляет стойкость ко всем перечисленным средам.

Обратите внимание! Если уровень давления диссоциации окисла превышает давление окисляющего элемента, окислительный процесс останавливается и металл обретает термодинамическую устойчивость.

На скорость окислительной реакции влияют и компоненты сплава. Например, марганец, сера, никель и фосфор никак не способствуют окислению железа. А вот алюминий, кремний и хром делают процесс более медленным. Еще сильнее замедляют окисление железа кобальт, медь, бериллий и титан. Сделать процесс более интенсивным помогут добавки ванадия, вольфрама и молибдена, что объясняется легкоплавкостью и летучестью данных металлов. Наиболее медленно окислительные реакции протекают при аустенитной структуре, поскольку она наиболее приспособлена к высоким температурам.

Еще один фактор, от которого зависит скорость коррозии, - характеристика обработанной поверхности. Гладкая поверхность окисляется медленнее, а неровная - быстрее.

Коррозия в жидкостях-неэлектролитах

К неэлектропроводным жидким средам (т.е. жидкостям-неэлектролитам) относят такие органические вещества, как:

  • бензол;
  • хлороформ;
  • спирты;
  • тетрахлорид углерода;
  • фенол;
  • нефть;
  • бензин;
  • керосин и т.д.

Кроме того, к жидкостям-неэлектролитам причисляют небольшое количество неорганических жидкостей, таких как жидкий бром и расплавленная сера.

При этом нужно заметить, что органические растворители сами по себе не вступают в реакцию с металлами, однако, при наличии небольшого объема примесей возникает интенсивный процесс взаимодействия.

Увеличивают скорость коррозии находящиеся в нефти серосодержащие элементы. Также, усиливают коррозийные процессы высокие температуры и присутствие в жидкости кислорода. Влага интенсифицирует развитие коррозии в соответствии с электромеханическим принципом.

Еще один фактор быстрого развития коррозии - жидкий бром. При нормальных температурах он особенно разрушительно воздействует на высокоуглеродистые стали, алюминий и титан. Менее существенно влияние брома на железо и никель. Самую большую устойчивость к жидкому брому показывают свинец, серебро, тантал и платина.

Расплавленная сера вступает в агрессивную реакцию почти со всеми металлами, в первую очередь со свинцом, оловом и медью. На углеродистые марки стали и титан сера влияет меньше и почти совсем разрушает алюминий.

Защитные мероприятия для металлоконструкций, находящихся в неэлектропроводных жидких средах, проводят добавлением устойчивым к конкретной среде металлов (например, сталей с высоким содержанием хрома). Также, применяются особые защитные покрытия (например, в среде, где содержится много серы, используют алюминиевые покрытия).

Способы защиты от коррозии

Методы борьбы с коррозией включают:

Выбор конкретного материала зависит от потенциальной эффективности (в том числе технологической и финансовой) его использования.

Современные принципы защиты металла основываются на таких методиках:

  1. Улучшение химической сопротивляемости материалов. Успешно зарекомендовали себя химически стойкие материалы (высокополимерные пластики, стекло, керамика).
  2. Изолирование материала от агрессивной среды.
  3. Уменьшение агрессивности технологической среды. В качестве примеров таких действий можно привести нейтрализацию и удаление кислотности в коррозийных средах, а также использование всевозможных ингибиторов.
  4. Электрохимическая защита (наложение внешнего тока).

Указанные выше методики подразделяются на две группы:

  1. Повышение химической сопротивляемости и изолирование применяются до того, как металлоконструкция запускается в эксплуатацию.
  2. Уменьшение агрессивности среды и электрохимическая защита используются уже в процессе применения изделия из металла. Применение этих двух методик дает возможность внедрять новые способы защиты, в результате которых защита обеспечивается изменением эксплуатационных условий.

Один из самых часто применяемых способов защиты металла - гальваническое антикоррозийное покрытие - экономически нерентабелен при значительных площадях поверхностей. Причина в высоких затратах на подготовительный процесс.

Ведущее место среди способов защиты занимает покрытие металлов лакокрасочными материалами. Популярность такого метода борьбы с коррозией обусловлена совокупностью нескольких факторов:

  • высокие защитные свойства (гидрофобность, отталкивание жидкостей, невысокие газопроницаемость и паропроницаемость);
  • технологичность;
  • широкие возможности для декоративных решений;
  • ремонтопригодность;
  • экономическая оправданность.

В то же время, использование широкодоступных материалов не лишено недостатков:

  • неполное увлажнение металлической поверхности;
  • нарушенное сцепление покрытия с основным металлом, что ведет к скапливанию электролита под антикоррозийным покрытием и, таким образом, способствует коррозии;
  • пористость, приводящая к повышенной влагопроницаемости.

И все же, окрашенная поверхность защищает металл от коррозийных процессов даже при фрагментарном повреждении пленки, тогда как несовершенные гальванические покрытия способны даже ускорять коррозию.

Органосиликатные покрытия

Химическая коррозия практически не распространяется на органосиликатные материалы. Причины этого кроются в повышенной химической устойчивости таких композиций, их стойкости к свету, гидрофобных качествах и невысоком водопоглощении. Также органосиликаты устойчивы к низким температурам, обладают хорошими адгезивными свойствами и износостойкостью.

Проблемы разрушения металлов из-за воздействия коррозии не исчезают, несмотря на развитие технологий борьбы с ними. Причина в постоянном возрастании объемов производства металлов и все более сложных условий эксплуатации изделий из них. Окончательно решить проблему на данном этапе нельзя, поэтому усилия ученых сосредоточены на поисках возможностей по замедлению коррозионных процессов.

Коррозией называют процесс самопроизвольного разрушения поверхности материалов вследствие взаимодействия с окружающей средой. Ее причиной является термодинамическая неустойчивость химических элементов к определенным веществам. Формально коррозии подвержены полимеры, дерево, керамика, резина, но к ним чаще применяют термин «старение». Наиболее серьезный ущерб наносит ржавление металлов, для защиты которых разрабатываются высокотехнологичные контрмеры. Но об этом мы поговорим позже. Учеными различается коррозия металлов химическая и электрохимическая.

Химическая коррозия

Она возникает обычно при воздействии на металлическую структуру сухих газов, жидкостей или растворов, не проводящих электрический ток. Суть этого типа коррозии - прямое взаимодействие металла с агрессивной средой. Элементы химически корродируют во время термической обработки или в результате длительной эксплуатации при достаточно высоких температурах. Это касается лопаток газовых турбин, арматуры плавильных печей, деталей двигателей внутреннего сгорания и так далее. В результате на поверхности образуются определенные соединения: оксиды, нитриды, сульфиды.

Она является следствием контакта металла с жидкой средой, способной проводить электрический ток. Вследствие окисления материал претерпевает структурные изменения, приводящие к образованию ржавчины (нерастворимого продукта), либо частицы металла переходят в раствор ионов.

Электрохимическая коррозия: примеры

Ее разделяют на:

  • Атмосферную, которая возникает при наличии на поверхности металла жидкостной пленки, в которой газы, содержащиеся в атмосфере (например, О 2 , СО 2 , SO 2), способны растворяться с образованием электролитных систем.
  • Жидкостную, которая протекает в токопроводящей жидкой среде.
  • Грунтовую, что протекает под воздействием грунтовых вод.

Причины

Поскольку обычно любой металл, который используется для промышленных нужд, не является идеально чистым и содержит включения различного характера, то электрохимическая коррозия металлов возникает вследствие образования на поверхности железа большого количества короткозамкнутых локальных гальванических элементов.

Появление их может быть связано не только с наличием различных (особенно металлических) примесей (контактная коррозия), но и с неоднородностью поверхности, дефектами кристаллической решетки, механическими повреждениями и тому подобное.

Механизм взаимодействия

Процесс электрохимической коррозии зависит от химического состава материалов и особенностей внешней среды. Если так называемый технический металл покрыт влажной пленкой, то в каждом из указанных гальванических микроэлементов, которые образуются на поверхности, протекают две независимые реакции. Более активный компонент коррозионной пары отдает электроны (к примеру, цинк в паре Zn-Fe) и переходит в жидкую среду в качестве гидратированных ионов (то есть корродирует) по следующей реакции (анодный процесс):

М + nH 2 O = M z + * nH 2 O + ze.

Эта часть поверхности является отрицательным полюсом локального микроэлемента, где металл электрохимически растворяется.

На менее активном участке поверхности, которая является положительным полюсом микроэлемента (железо в паре Zn-Fe), электроны связываются за счет протекания реакции восстановления (катодный процесс) по схеме:

Таким образом, наличие окислителей в водяной пленке, которые способны связывать электроны, обеспечивает возможность дальнейшего хода анодного процесса. Соответственно, электрохимическая коррозия может развиваться только при условии одновременного протекания как анодного, так и катодного процессов. Вследствие торможения одного из них скорость окисления уменьшается.

Процесс поляризации

Оба вышеуказанных процесса вызывают поляризацию соответствующих полюсов (электродов) микроэлемента. Какие здесь есть особенности? Обычно электрохимическая коррозия металлов более существенно замедляется поляризацией катода. Поэтому она будет усиливаться под влиянием факторов, которые предотвращают эту реакцию и сопровождаются так называемой деполяризацией положительного электрода.

Во многих коррозионных процессах катодная деполяризация осуществляется разрядом ионов водорода либо восстановлением молекул воды и соответствует формулам:

  • В кислой среде: 2Н + + 2е = Н 2 .
  • В щелочной: 2Н 2 О + 2е = Н 2 + 2ОН - .

Диапазон потенциалов

Потенциал, который соответствует этим процессам, в зависимости от природы агрессивной среды, может изменяться от -0,83 до 0 В. Для нейтрального водного раствора при температурах, близких к стандартной, он равен примерно -0,41 В. Следовательно, ионы водорода, содержащиеся в воде и в нейтральных водных системах, могут окислять только металлы с потенциалом, меньшим, чем -0,41 В (расположенные в ряду напряжений до кадмия). Учитывая то, что некоторые из элементов защищены оксидной пленкой, число металлов, подверженных окислению в нейтральных средах ионами водорода, незначительное.

Если влажная пленка содержит растворенный кислород воздуха, то он способен, в зависимости от характера среды, связывать электроны эффектом кислородной деполяризации. В этом случае схема электрохимической коррозии выглядит следующим образом:

  • О 2 + 4е + 2Н 2 О = 4ОН - или
  • О 2 + 4е + 4Н + = 2Н 2 О.

Потенциалы указанных электродных реакций при температурах, близких к стандартной, изменяются от 0,4 В (щелочная среда) до 1,23 В (кислая среда). В нейтральных средах потенциал процесса восстановления кислорода при указанных условиях соответствует значению 0,8 В. Значит, растворенный кислород способен окислять металлы с потенциалом меньше 0,8 В (расположенные в ряду напряжений до серебра).

Важнейшие окислители

Виды электрохимической коррозии характеризуются окислительными элементами, важнейшими из которых являются ионы водорода и кислород. При этом пленка, содержащая растворенный кислород, в коррозионном отношении значительно опаснее, чем влага, где кислорода нет, и которая способна окислять металлы исключительно ионами водорода, так как в последнем случае количество видов материалов, способных корродировать, значительно меньше.

Например, в стали и в чугуне присутствуют примеси углерода преимущественно в виде карбида железа Fe 3 C. В этом случае механизм электрохимической коррозии с водородной деполяризацией для указанных металлов выглядит следующим образом:

  • (-) Fe - 2e + nH 2 O = Fe 2+ · nH 2 O (может образовываться ржавчина);
  • (+) 2Н + + 2е = Н 2 (в подкисленной среде);
  • (+) 2Н 2 О + 2е = Н 2 + 2ОН - (в нейтральной и щелочной среде).

Механизм коррозии железа, в котором содержатся примеси меди, в случае кислородной деполяризации катода описывается уравнениями:

  • (-) Fe - 2e + nH 2 O = Fe 2+ ·nH 2 O;
  • (+) 0,5О 2 + Н 2 О + 2е = 2ОН - (в подкисленной среде);
  • (+) 0,5О 2 + 2Н + + 2е = Н 2 О (в нейтральной и щелочной среде).

Электрохимическая коррозия протекает с разной скоростью. Этот показатель зависит от:

  • разности потенциалов между полюсами гальванического микроэлемента;
  • состава и свойств электролитной среды (рН, наличие ингибиторов и стимуляторов коррозии);
  • концентрации (интенсивности подачи) окислителя;
  • температуры.

Методы защиты

Электрохимическая защита металлов от коррозии достигается следующими способами:

  • Созданием антикоррозионных сплавов (легированием).
  • Увеличением чистоты индивидуального металла.
  • Нанесением на поверхность различных защитных покрытий.

Эти покрытия в свою очередь бывают:

  • Неметаллическими (краски, лаки, смазочные материалы, эмали).
  • Металлическими (анодные и катодные покрытия).
  • Образованными специальной обработкой поверхностей (пассивация железа в концентрированных серной или азотной кислотах; железа, никеля, кобальта, магния в растворах щелочей; образование оксидной пленки, например, на алюминии).

Металлическое защитное покрытие

Наиболее интересной и перспективной является электрохимическая защита от коррозии другим видом металла. По характеру защитного воздействия металлизированные покрытия подразделяют на анодные и катодные. Остановимся на этом моменте более подробно.

Анодным называется покрытие, образованное более активным (менее благородным) металлом, чем тот, что защищают. То есть осуществляется защита элементом, который стоит в ряду напряжений до основного материала (например, покрытие железа цинком или кадмием). При местных разрушениях защитного слоя корродировать будет менее благородный металл-покрытие. В зоне царапин и трещин образовывается локальный гальванический элемент, катодом в котором является ограждаемый металл, а анодом - покрытие, которое окисляется. Целостность такой защитной пленки значения не имеет. Однако чем она толще, тем медленнее будет развиваться электрохимическая коррозия, дольше будет длиться полезный эффект.

Катодным называется покрытие металлом с большим потенциалом, который в ряду напряжений стоит после защищаемого материала (например, напыление низколегированных сталей медью, оловом, никелем, серебром). Покрытие должно быть сплошным, так как при его повреждении образовываются локальные гальванические элементы, в которых основной металл будет анодом, а защитный слой - катодом.

Как уберечь металл от окисления

Электрохимическая защита от коррозии подразделяется на два типа: протекторную и катодную. Протекторная аналогична анодному покрытию. К материалу, который нужно защитить, присоединяют большую пластину более активного сплава. Образуется гальванический элемент, основной металл в котором служит катодом, а протектор - анодом (он корродирует). Обычно для этого типа защиты применяют цинк, алюминий или сплавы на основе магния. Протектор постепенно растворяется, поэтому его нужно периодически заменять.

Много неприятностей в коммунальном хозяйстве и в промышленности в целом доставляет электрохимическая коррозия трубопроводов. В борьбе с ней наиболее подходит метод катодной поляризации. Для этого металлическая конструкция, которая защищается от разрушительных процессов окисления, подключается к отрицательному полюсу какого-либо внешнего источника постоянного тока (она после этого становится катодом, при этом возрастает скорость выделения водорода, а скорость коррозии снижается), а к положительному полюсу присоединяют малоценный металл.

Электрохимические методы защиты эффективны в токопроводящей среде (яркий пример - морская вода). Поэтому протекторы часто используют, чтобы защитить подводные части морских судов.

Обработка агрессивной среды

Этот метод является эффективным, когда электрохимическая коррозия железа протекает в небольшом объеме токопроводящей жидкости. Справиться с разрушительными процессами в этом случае можно двумя способами:

  • Удалением из жидкости кислорода (деаэрация) в результате продувки инертным газом.
  • Введением в среду ингибиторов - так называемых замедлителей коррозии. Например, в случае если поверхность разрушается в результате окисления кислородом, добавляют органические вещества, молекулы которых содержат определенные аминокислоты (имино-, тио- и другие группы). Они хорошо адсорбируются на поверхности металла и существенно снижают скорость электрохимических реакций, приводящих к разрушениям поверхностного контактного слоя.

Вывод

Безусловно, коррозия химическая и электрохимическая приносит значительный ущерб и в промышленности, и в быту. Если бы металл не корродировал, срок службы многих предметов, деталей, агрегатов, механизмов значительно увеличился бы. Сейчас ученые активно разрабатывают альтернативные материалы, способные заменить металл, не уступающие по эксплуатационным характеристикам, однако полностью отказаться от его применения в ближайшей перспективе, наверное, невозможно. В этом случае на передний план выходят передовые методы защиты металлических поверхностей от коррозии.