2 сплавы металлов их классификация. Понятие сплава, их классификация и свойства

Черная рябина , или черноплодная рябина, обладает полезными свойствами, о которых ми расскажем в данной статье. Созревание и сбор рябины происходит осенью. Сок этих черных, круглых ягодок используют для лечения многих болезней.

В народе встречается другое название - арония. В Европу черная рябина попала в конце XIX ст., но о лечебных свойствах, люди знали еще задолго и успешно лечили разные кожные заболевания.

До XX ст. в Европе рябину выращивали как декоративное дерево. Только после проведенных исследований, признали растение как лечебное и начали широко использовать как в традиционной, так и в народной медицине.

Круглые плоды аронии достигают в диаметре 12 мм, имеют приятный и сладкий вкус. Не созрелая ягода немного терпковата. Собирают черную рябину в конце сентября - начало октября, в зависимости от климатических условий. Сок из ягод для лечения используют в свежем виде, или заготавливать на зиму.

Ниже мы поделимся с вами рецептами, как избавится от различных болезней с помощью этой маленькой, но очень полезной ягодки.

Черная рябина - полезные свойства (химический состав)

Флавоноид рутин способен замедлять старение клеток в организме и считается очень важным его компонентом, без которого человек не может существовать.

В состав рябины входят :

  • Витамины: , , , , , , К, РР бета-каротин
  • Микро- и макроэлементы, железо, медь, марганец, бор, хром, йод, молибден, калий, фтор, натрий.
  • Кислоты: фолиевая, никотиновая, щавелевая, лимонная и яблочная.
  • Фруктоза, глюкоза, сахароза, клетчатка, дубильные вещества.
  • В состав аронии входят флавоноиды, крахмал, зола, пектины, сорбит, гликозиды.

В черной рябине не содержатся жиры и достаточно низкая калорийность (на 100 грамм 55 ккал). Значительную часть ягоды составляют углеводы.

Лечебные свойства черной рябины фото

Арония способна излечить множество болезней, благодаря лечебным свойствам сока.

  • Рябина черноплодная приводит в норму уровень холестерина в крови.
  • Согласно доказательствам ученых, ягоды употребляют для лечения атеросклероза, они способствуют свёртывание крови и останавливают кровотечение.
  • Ягоды аронии употребляют при сахарном диабете, восстанавливают поврежденные капилляры.
  • Сок снижает артериальное давление. Это прекрасное средство против гипертонии, обладает мочегонными свойствами. Кстати большинство медикаментов для лечения гипертонии являются мочегонными.
  • Большое содержание калия укрепляет стенки сосудов, улучшает работу сердца и сердечно-сосудистой системы в целом. Калий препятствует отечности.
  • Благотворно воздействует на всю дыхательную систему. Рекомендуется принимать в период реабилитации после перенесенных болезней связанных с дыхательной системой.
  • Арония прекрасный антисептик. Рекомендуется принимать людям я низкой кислотностью. Сок активирует выделение желудочного сока, повышая кислотность.
  • Стимулирует отхождение и вырабатывание желчи.
  • Способствует процессам пищеварения.
  • В состав черной рябины входит йод, который необходим для лечения лучевой болезни, щитовидной железы, тиреотоксикоза, базедовой болезни.
  • Рекомендуется принимать людям с нервными расстройствами, при нервозах, вспыльчивости, заторможенности и перевозбуждении.
  • Пектиновое вещество содержащиеся в ягодах выводят из организма тяжелые металлы и радиоактивные вещества, приостанавливает развитие онкозаболеваний и успешно борется з образованием злокачественных опухолей.
  • Ягоды рябины рекомендуется принимать как профилактическое средство в межсезонье для укрепления иммунитета, для борьбы с простудой. Прекрасное гипповитаминное средство.
  • Сок помогает справиться с головной болью и головокружением.
  • В сочетании с другими плодами, прекрасное средство от запора.
  • Полезен при нарушении зрения и атрофии зрительного нерва.

Как принимать черную рябину для лечения

  • Черную рябину можно употреблять в свежем, замороженном и сушеном виде, при этом она не потеряет лечебные свойства.
  • Употребляют сок из ягод в чистом виде, или в сочетании с соками других фруктов.
  • Различные джемы, варенья, повидло, как отдельный продукт, так и в сочетании с яблоками, шиповником.
  • В качестве отваров и настоев. Настойку изготавливают из водки, или медицинского спирта, рецепт которого мы расскажем дальше в статье.
  • Для наружного применения используют компрессы и примочки.
  • Для профилактики пьют чай из заваренных ягод. Можно добавить листья или другие фрукты.
  • Из рябины готовят прекрасное вино, которое зимой понемногу пьют в качестве профилактических действий, для повышения иммунитета, снижение артериального давления, улучшения работы желудка и желудочно-кишечного тракта в целом.

Кроме лечебных свойств, рябина прекрасное средство в кулинарии. Ее добавляют к блюдам, выдавливают сок, который служит добавкой к соусам.

Как выбрать черную рябину

В первую очередь это внешний вид. Спелая ягода должна быть не только черно, но и сочной. Если немного надавить, должна чувствоваться мякоть. Она не должна быть гнилой и сморщенной. Твердая поверхность свидетельствует о раннем срывании.

Выбирайте ягоды блестящие и крупные. Сбор проводят осенью до первых заморозков, только тогда вкус будет сладким. В период созревание, аронию лучше съедать в свежем виде, но в замороженном состоянии она не теряют своих качеств.

По возможности, выжмите сок и приготовьте муссы. Часть ягод высушивают и в таком виде заготавливают на зиму.

Черная рябина - рецепты народной медицины

Фото ягоды черной рябины

В народной медицине черную рябину считают одной из немногих растений, лечебные свойства которой применяют практически при любом заболевании. Ягоды употребляют в сыром состоянии, или готовят отвар или настой.

Отвар из черной рябины

  1. Заливают 20 грамм сухих плодов рябины 250 мл кипятка.
  2. Кипятят на маленьком огне 5-10 минут.
  3. Затем отвару дают настояться полчаса.
  4. Процеживают и пьют по 0,5 стакана 3 раза в день.
  5. Отвар принимают для профилактики как общеукрепляющее средство.

Свежие ягоды черной рябины при низкой кислотности и гипертонии

  1. Необходимо съедать по 100 г ягод, 3 раза в день за 20 минут до приема пищи на протяжении 1-1,5 месяца.
  2. Помимо этого, рекомендовано употреблять отвар из черной смородины, шиповника, или любого другого растения с большим содержанием витамина С.
  3. Можно принимать препарат витамин С в чистом виде.

Лечение гипертонии

  1. Пейте выжатый сок из рябины с медом.
  2. На 100 мл сока, 2 ст. ложки меда.
  3. Принимать 2 раза в день по 50 мл за 20 минут до приема пищи.
  4. Курс лечения 6 недель.

  1. 1 ст. ложку сухих ягод залить стаканом воды и проварить 10 минут.
  2. Пить 1 раз в день по пол стакана.

Лечение атеросклероза

  1. На 100 граммов плодов черной рябины добавить 2 ч. ложки сахара.
  2. Употреблять по 100 грамм 1 раз в день.

Лечение гиповитаминоза и малокровия

Нужно съедать по 200-250 грамм свежих ягод на протяжении дня. Как дополнение к ягодам, пьют отвар из шиповника, или черной смородины.

Лечение сахарного диабета

Сок рябины разрешен людям страдающим сахарным диабетом , но принимать необходимо осторожно, ведь в сильной концентрации сока содержится большое количество сахара. Сок необходимо разбавлять с водой, или другими кислыми соками. Так вы значительно снизите концентрацию сахара, не убавляю полезных свойств.

Черноплодная рябина при желудочно-кишечных расстройствах

Сок пьют при диареи. Содержащиеся в рябине дубильные и пектиновые вещества очищают печень, стимулируют перистальтику кишечника, способствуют выделению ферментов, обладают желчегонным действием, снимают боли и спазмы. Сок разрешен для приема внутрь взрослым и детям. Но людям с желчекаменной болезнью и гастритом необходимо предварительно проконсультироваться с врачом.

Воздействие сока рябины на щитовидную железу

Рекомендуют принимать сок черной рябины для восстановления работы щитовидной железы, благодаря свойствам выводить из организма радиоактивные вещества и тяжелые металлы. Прием ягод нейтрализует воздействие на организм вредных веществ.

Указанный в рецепте объем сырья для 5 л вина.

Ингредиенты:

  • Ягоды рябины - 3 кг
  • Сахар 2 кг
  • Черный изюм 250 грамм
  • вода 3 л

Приготовление:

  1. Ягоды промойте и поместите в емкость.
  2. Добавьте изюм и засыпьте сахар 1 кг.
  3. Залейте 3 л водой.
  4. Плотно закройте и поставьте в сухое и темное место, периодически взбалтывая емкость.
  5. На протяжении следующих 15 дней, постепенно добавляют оставшиеся ингредиенты, затем оставляют емкость на 1 месяц для выдержки.
  6. Плоды должны полностью осесть на дне.
  7. Затем жидкость процеживают и настаивают еще 1 месяц. Все вино готово к употреблению.

Приготовление сиропа из черной рябины

Ингредиенты:

  • 1 кг ягод рябины
  • 1 кг сахара
  • Листья вишни 100 грамм
  • Лимонная кислота 20 грамм
  • 1 л воды

Приготовление:

  1. Засыпать плоды аронии и вишни, залить водой и кипятить на маленьком огне 10 минут.
  2. Процедить и добавить лимонную кислоту и еще раз довести до кипения.
  3. Дать остыть, разлить в тару, плотно закрыть и поставить в темное место на 1 сутки.
  4. Дальше в сироп добавляют сахар, доводят до кипения на маленьком огне, постоянно помешивая, чтобы сахар не пригорел.
  5. В конце переливают в посуду и плотно закрывают. Сироп готов.

Настойка из черной рябины в домашних условиях

Ингредиенты:

  • 1 стакан спелых ягод
  • Листья вишни 100 грамм
  • Сахар 0,5 кг
  • 0,5 л водки (разбавленный медицинский спирт)
  • 1 л воды

Приготовление:

  1. В воду добавить плоды рябины и листья вишни, доведите до кипения и кипятите 10-15 минут.
  2. Затем добавить сахар и постоянно перемешивать до полного растворения.
  3. Снять с огня и остудить.
  4. В емкость добавить водку, плотно закрыть в стеклянной таре и поставить в темное место на 2 недели.
  5. По окончании срока, наливку процедить.

Рецепт мусса

Раздавите ягоды, или взбейте с помощью блендера, добавьте банан, клубнику и по вкусу натуральный йогурт. Все тщательно взбейте и наслаждайтесь вкуснятиной.

Приготовление варенья из черной рябины

Фото варенья из черной рябины

Прекрасное средство как добавка к чаю в зимний период в качестве профилактики. По вкусу арония немного терпковата, так что можно добавить другие сладкие ягоды.

Ингредиенты:

  • 1 кг ягод черноплодной рябины
  • 1 стакан сахара

Приготовление сиропа:

    Перед приготовлением сиропа, ягоды черноплодной рябины проваривают 5 минут в воде, так они станут немного мягче.

  1. 2 стакана воды (можно взять воду, в которой только что проваривали ягоды) и 1 стакан сахара смешиваем и ставим на маленький огонь до полного растворения сахара, не забывая регулярно перемешивать.
  2. Затем добавляют ягоды рябины (при необходимости другие компоненты малина, клубника, мелко нарезанные корки апельсины, яблоки, сливы).
  3. Кипятят 10 минут.
  4. Снимают с огня, дают остыть, накрывают и настаивают 6-8 часов (или на всю ночь).
  5. Затем повторно доводят до кипения, и повторно настаивают такое же время.
  6. Третий раз сироп варят 10 минут, дают остыть, разливают в стеклянные емкости и закатывают в банки на зиму (при необходимости).

Черная рябина в традиционной медицине

На основе аронии используют много медицинских препаратов. Сок из рябины стал неотъемлемой частью препаратов от сахарного диабета, гипертонии, нарушении работы сердца и сердечно-сосудистой системы. Сок предотвращает возникновения бляшек в крови, препятствует холестерину, очищает кровь и нормализирует кровообращение.

В состав входят флавоноиды, которые благотворно влияют на организм человека, и каких либо запретов по приему внутрь для беременных не существует. Наоборот, сок предотвращает ломкость капилляров, делает сосуды эластичными. Плоды благотворно влияют на пищеварение беременной, повышают аппетит, нормализируют артериальное давление, не допускают возникновению анемии.

Употребление свежих плодов позитивно сказывается на иммунитете, а также насыщают организм витаминами. Фолиевая кислота, которая содержится в ягодах, крайне необходима как матери, так и плоду для его роста.

Но употребление большого количества черной рябины может снизить давление. Если в женщины наблюдается постоянное низкое давление, необходимо предварительно проконсультироваться с врачом, а дневная норма не должна превышать 100 грамм свежих плодов.

Как и когда собирать мы уже выше рассказали, но как же правильно хранить черную рябину зимой без потери полезных свойств?

Существует несколько способов хранения:

  • Замораживание свежо-сорванных ягод. Все довольно просто. Ягоды срываете и сразу помещаете в морозилку. Зимой вы можете добавлять в муссы, компоты, отвары, джем, употреблять целыми. Польза от размораживания аронии практически не снижается, за исключением части витамина Р.
  • Сушка после сбора. По сравнению с предыдущим способом, все полезные качества остаются, а ягоды хранятся довольно долго. После сбора их нанизывают на нитку, или проволоку и подвешивают в хорошо проветриваемом сухом месте в тени. Можно сушить вместе со щитком.
  • Вяленная черная рябина. Этот способ также хорошо сохраняет все вкусовые и полезные свойства. Сорвите, промойте и высушите ягоды, затем разложить на ровную поверхность в один слой на солнце, или используйте духовку. Сушат на малом огне не выше 60 градусов. На солнце процедура занимает 1-2 часа. В духовке сушка - 30 минут при температуре 40 градусов, затем 10-15 минут при температуре 60 градусов. Цвет не должен поменяться, иначе все (или часть) свойства потеряются.

Противопоказание

Черная рябина очень полезна для человека, но существуют несколько предостережений, когда употребление аронии не рекомендуется.

  • Свертывание крови слишком большое. Сок способен останавливать кровотечение и тем самым повышает свертывание крови.
  • При тромбофлебите.
  • Варикоз и расширение вен.
  • Гастрит (если повышенная кислотность). Сок повышает кислотность, при гастрите с пониженной кислотностью прием не запрещен.
  • Язва желудка и 12-ти перстной кишки.
  • Ишемическая болезнь.
  • Людям, перенёсшим инсульт, или инфаркт.

Даже если вас не коснулись выше перечисленные болезни, рекомендовано, перед употреблением сдать все анализы и получить разрешение у врача.

Пусть вас никогда не беспокоит ваше здоровье, а черную рябину принимать только в качестве профилактики. Будьте здоровы!

Как вы уже знаете, у бронзы, например, прочность выше, чем у составляющих ее меди и олова. Сталь и чугун прочнее технически чистого железа. Поэтому в чистом виде металлы используют редко. Значительно чаще применяются их сплавы. Известно немногим более 80 металлов, но из них получены десятки тысяч различных сплавов.

Помимо большей прочности многие сплавы обладают большей коррозионной стойкостью и твердостью, лучшими литейными свойствами, чем чистые металлы. Так, чистая медь очень плохо поддается литью, из нее трудно получить отливки, и в то же время оловянная бронза - сплав Си + Бп имеет прекрасные литейные свойства: из нее отливают художественные изделия, требующие тонкой проработки деталей. Чугун - сплав железа с углеродом - также великолепный литейный материал. Чистый алюминий - очень мягкий металл, сравнительно непрочный на разрыв. Но сплав, состоящий из А1, М£, Мп, Си, №, называемый дюралюминием, в четыре раза прочнее алюминия на разрыв.

Помимо более высоких механических качеств сплавам присущи свойства, которых нет у чистых металлов. Примерами могут служить получаемая на основе железа нержавеющая сталь - материал с высокой коррозионной стойкостью даже в агрессивных средах и с высокой жаропрочностью, магнитные материалы, сплавы с высоким электрическим сопротивлением, с малым коэффициентом термического расширения.

Сплавы - это материалы с характерными свойствами, состоящие из двух или более компонентов, из которых по крайней мере один - металл.

Компонентами сплавов могут быть и неметаллы, и соединения.

По состоянию компонентов сплавы могут быть однородными, когда при сплавлении образуется как бы раствор одного металла в другом, например сплавы меди и олова, золота и серебра, и неоднородными, представляющими собой механическую смесь металлов.

Сплавы классифицируются по-разному, в зависимости от того, какой признак взят за основу. Чаще всего сплавы подразделяют по составу : медные, алюминиевые, никелевые, титановые и т. д.

Есть группы сплавов, носящие общие названия: бронзы, латуни и др. Иногда в названии сплава отмечают особо ценные компоненты: бериллиевые бронзы, вольфрамовая сталь и др.

В металлургии железо и все его сплавы выделяют в одну группу под названием черные металлы; остальные металлы и их сплавы имеют техническое название цветные металлы .

Подавляющее большинство железных (или черных) сплавов содержит углерод. Их разделяют на чутуны и стали.

Чугун - сплав на основе железа, содержащий от 2 до 4,5% углерода, а также марганец, кремний, фосфор и серу. Чугун значительно тверже железа, обычно он очень хрупкий, не куется, а при ударе разбивается. Этот сплав применяется для изготовления различных массивных деталей методом литья, так называемый литейный чугун и для переработки в сталь - передельный чугун.

В зависимости от состояния углерода в сплаве различают серый и белый чугун (табл. 4).

Вид
Состав
Свойства
Применение
Серый чугун
Содержит 1,7-4,3% С, 1,25-4,0% и до 1,5% Мn. Из-за большого содержания кремния снижается растворимость углерода, поэтому углерод находится в свободном состоянии в виде графита
Сравнительно мягкий и поддающийся механической обработке материал. Свободный углерод придает чугуну мягкость Производство литых деталей (шестерни, колеса, трубы И т. д.)
Белый чугун
Содержит 1,7-4,3% С, более 4% Мn, но очень мало кремния. Углерод в основном содержится в виде цементита - карбида железа Fе3 С
Твердый и хрупкий материал. Эти свойства придает цементит, который обладает большой твердостью
Переработка в сталь

Сталь - сплав на основе железа, содержащий менее 2% углерода. По химическому составу стали разделяют на два основных вида: углеродистая и легированная.

Углеродистая сталь представляет собой сплав железа главным образом с углеродом, но, в отличие от чугуна, содержание в ней углерода, а также Мn, Si, Р и S гораздо меньше. В зависимости от количества углерода стали подразделяют на мягкие (содержание углерода не превышает 0,3%), средней твердости (углерода несколько больше, чем в мягких) и твердые (углерода может быть до 2%). Из мягкой и средней твердости стали делают детали машин, трубы, болты, гвозди, скрепки и т. д., а из твердой - различные инструменты.

Легированная сталь - это тоже сплав железа с углеродом , только в него введены еще специальные, легирующие добавки: хром, никель, вольфрам, молибден, ванадий и др.

Легирующие добавки придают сплаву особые качества. Так, хромоникелевые стали очень пластичные, прочные, жаростойкие, кислотоупорные, устойчивые против коррозии (ржавления). Они применяются в строительстве (например, облицовка колонн станции «Маяковская» московского метро выполнена из хромоникелевой стали), а также для изготовления нержавеющих предметов домашнего обихода (ножей, вилок, ложек), всевозможных медицинских и других инструментов. Хромо-молибденовые и хромованадиевые стали очень твердые, прочные и жаростойкие. Они используются для изготовления трубопроводов, компрессоров, двигателей и многих других деталей машин современной техники. Хромовольфрамовые стали сохраняют большую твердость при очень высоких температурах. Они служат конструкционным материалом для быстрорежущих инструментов.

Некоторые легированные стали представлены в таблице 5.

Свойства некоторых легированных сталей и их применение

Марганец
Твердость, механическая прочность, устойчивость к ударам и трению
Детали дробильных установок, железнодорожные рельсы, зубья ковшей экскаваторов
Титан
Жаростойкость, механическая прочность при высоких температурах, коррозионная стойкость
В самолето-, ракето- и судостроении. Химическая аппаратура
Вольфрам
Твердость и

жаропрочность,

износоустойчивость

Быстрорежущие инструменты, пилы, фрезы, штампы, нити электрических ламп
Молибден
Эластичность, жаростойкость, коррозионная стойкость
Лопасти турбин реактивных самолетов и автомобилей, броневые плиты, лабораторная посуда, детали электронных ламп
Кремний
Устойчивость к воздействию кислот
Трансформаторы, кислотоупорные аппараты и приборы
Ванадий
Высокая прочность, упругость и устойчивость к ударам

1. Сплавы и их классификация.

2. Черные металлы: чугуны и стали.

3. Цветные металлы: бронза, латунь, мельхиор, дюралюминий.

Какой период в истории человечества называют «бронзовым веком»? Почему?

Какое количество вещества меди и никеля нужно взять для производства 25 кг мельхиора?

Что объединяет два выражения: «легирующие элементы стали» и «привилегированное положение в обществе»?

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Алюминиевые сплавы имеют более широкое применение в качестве конструкционного материала, чем технический алюминий. Основными легирующими элементами алюминиевых сплавов являются Си, Zn, Mg, Мп, Si, Ni, Fe. Эти элементы образуют с алюминием твердые растворы ограниченной растворимости, формируют упрочняющие зоны и промежуточные фазы с алюминием и между собой - Ф (CuAl2, Mg2Si, Al2CuMg, Al6CuMg4 и др.).

>

Мп и Mg оказывают положительное влияние на коррозионную стойкость, однако снижают тепло- и электропроводность алюминиевых сплавов. В литейных сплавах основным легирующим элементом выступает кремний, образующий с алюминием эвтектику. Ni, Ti, Cr, Fc образуют стабильные сложнолстироваиныс упрочняющие фазы, тормозят диффузионные процессы и тем самым повышают жаропрочность алюминиевых сплавов. Литий в сплавах на основе алюминия повышает их модуль упругости. Алюминиевые сплавы классифицируют по технологии изготовления полуфабрикатов и изделий из них, по способу упрочняться термической обработкой и свойствам (табл. 9.3).

Таблица 93

Классификация алюминиевых сплавов

Марка сплава

Упрочня- емость/ нсупрочня- емость (+/-) термической обработкой

Основные характеристики группы сплавов

нормируемые сплавы

Коррозионностойкие, повышенной пластич- ности

АМг5, АМгб

АВ, АД31, АД33

Пластичные при комнатной температуре

Среднепрочные

Высокопрочные

Малой плотности, высокомодульные

Ковочные, пластичные при повышенных температурах

Al-Си-Mg-Fe-Ni

Жаропрочные

Литейные сплавы

Герметичные

АК9ч (АЛ4), АК7ч (АЛ9), АК8л (АЛ34)

Высокопрочные и жаро- прочные

АМгЗМц (АЛ28)

Коррозионностойкие

АЦ4Мг (АЛ 24)

Спеченные сплавы

Высокомодульные с пониженной плотностью

С низким коэффициентом л и ней ного рас ш и ре н и я

Высокопрочные

САП-1, САП-2

Жаропрочные

Al-Cu-Mg- A1 2 0 3

Алюминиевые сплавы подразделяют в основном на деформируемые и литейные, а также спеченные алюминиевые порошки (САП) и сплавы (САС) и композиционные, при производстве которых широко используются процессы пластической деформации и литья.

В соответствии с диаграммой состояния «алюминий - легирующий элемент» (рис. 9.2) сплавы, расположенные левее точки Е, при высокой температуре имеют однофазную структуру а-твердого раствора, низкую прочность и высокую пластичность. Поэтому эти сплавы легко обрабатываются давлением и относятся к категории деформируемых сплавов. Сплавы литейные по содержанию легирующих элементов расположены правее точки?, содержат в структуре эвтектику и обладают высокими литейными свойствами: жид- котекучестыо и высокой концентрацией литейной пористости. Сплавы эвтектического состава кристаллизуются при постоянной

Рис. 9.2.

Д - деформируемые сплавы; Л - литейные сплавы; I - сплавы, не упрочняемые термической обработкой; II - сплавы, упрочняемые термической обработкой; Ф -

промежуточная фаза температуре, отличаются наиболее высокой жидкотекучестыо, пониженными механическими свойствами из-за наличия в их структуре большого количества эвтектической составляющей.

Точка М на диаграмме, соответствующая пределу насыщения твердого раствора при комнатной температуре, является границей между сплавами, не упрочняемыми и упрочняемыми термической обработкой.

Упрочняющая термическая обработка алюминиевых сплавов сводится к закалке с 435-545°С, естественному старению при 20°С или искусственному при 75-225°С в течение 3-48 ч. Не упрочняемые сплавы подвергают гомогенизационому (480-530°С, 6-36 ч), рекристализационному (300-500°С, 0,5-3 ч) и (закаченные и состаренные сплавы) разупрочняющему (350-430°С, 1-2 ч) отжигу.

Маркировка алюминиевых сплавов. Для маркировки алюминиевых сплавов принята смешанная буквенная и буквенно-цифровая система. Деформируемые сплавы обозначают буквами АД, Д, АК, AM, АВ, литейные - АЛ. Буквы АД в начале марки означают алюминий технический, последующая цифра указывает на чистоту алюминия. Буквой Д обозначают деформируемые сплавы системы (А1-Си-Mg) - дуралюмины, буквами АК - алюминиевый ковочный сплав. Буквы АВ обозначают сплав алюминия с магнием и кремнием - авиаль. Буквы АМг и АМц обозначают сплав алюминия с магнием (Мг) и с марганцем (Мц), цифры, следующие за буквами (АМг1, АМг5, АМгб), соответствуют примерному содержанию магния в сплавах. Буква В в начале марки означает высокопрочный алюминиевый сплав.

В настоящее время водится единая четырехцифровая маркировка алюминиевых сплавов (рис. 9.3). Первая цифра обозначает основу всех сплавов. Алюминию присвоена цифра один. Вторая цифра соответствует главному легирующему элементу или группе главных легирующих элементов. Третья цифра или третья со второй повторяют старую маркировку. Четвертая цифра указывает, что сплав деформируемый, если она нечетная или 0. Опытные сплавы


Рис. 93. Цифровая маркировка алюминиевых сплавов обозначают цифрой 0, стоящей впереди единицы (пятизначная маркировка допустима только для опытных сплавов). Цифра 0 исключается из пятизначной маркировки, когда сплав становиться серийным.

Буквенно-цифровая маркировка литейных алюминиевых сплавов (по ГОСТ 1583-93) базируется на принципе маркировки легированных сталей.

Первая буква А указывает основу сплава - А1, последующие буквы соответствуют первым буквам названий основных легирующих элементов (К - кремний, М - медь, Мг - магний, Мц - марганец, Н - никель, Ц - цинк). Числа, следующие за буквами, показывают усредненное содержание соответствующего компонента (в % по массе). При содержании в сплаве легирующего элемента меньше 1% буква, обозначающая данный элемент, в маркировке не указывается. Чистота сплавов обозначается буквами, стоящими после маркировки сплава: Ч, ОЧ - соответственно чистый или очень чистый но примесям железа и кремния. ГОСТ 1583-93 предусматривает возможность использования обозначения литейных алюминиевых сплавов буквенно-цифровой маркой с указанием в скобках старой марки (см. табл. 9.3).

Буквенно-цифровая система маркировки технологической обработки качественно отражает механические, химические и другие свойства сплава (табл. 9.4).

Таблица 9.4

Буквенно-цифровая маркировка технологической обработки деформируемых и литейных сплавов

Обои на- чение

деформируемые сплавы

литейные сплавы

Мягкий, отожженный

Модифици рованн ы й

Закаленный и естественно состаренный

Закаленный и искусственно состаренный на максимальную прочность

Искусственно состаренный без предварительной закачки

Закаленный и искусственно состаренный но смягчающему режиму для повышения сопротивления коррозии под напряжением

Закаленный

Закаленный и кратковременно (не полностью) искусственно состаренный

Закаленный и полностью искусственно состаренный

Вид обработки, характеристика свойств материала

деформируемые сплавы

литейные сплавы

Закаченный с последующим стабилизирующим отпуском

Закаленный с последующим смягчающим отпуском

Нагартованный (5-7%)

11олу нагартованный

Усиленно нагартованный (20%)

Закаленный, естественно состаренный и нагартованный

Закаленный, нагартованный и искусственно состаренный

Закаленный, естественно состаренный, повышенной прочности

Горячекатаные (листы, плиты)

Нормальная плакировка

Утолщенная плакировка (8% на сторону)

Деформируемые алюминиевые сплавы. Химический состав и механические свойства деформируемых сплавов приведены в табл. 9.5.

К деформируемым сплавам, не упрочняемым термической обработкой, относятся сплавы на основе систем А1-Мп (АМц) и А1-Mg (АМг), отличающиеся пониженной прочностью, но повышенными пластичностью и коррозионной стойкостью. Сплавы хороню свариваются. Более широкое применение получили сплавы АМг из-за меньшей плотности. Из сплавов изготавливают изделия, получаемые методом глубокой вытяжки и сварки, способные работать в различных корозионно-активных средах (сварные баки, сосуды, трубопроводы для масла и бензина, корпуса, мачты речных судов). Сплавы АВ, АД31, АД 33 системы А1-Mg-Si обладают высокой коррозионной стойкостью, хорошей пластичностью в холодном и горячем состоянии, свариваются с помощью точечной, шовной и аргоно-дуговой сварки. Сплавы удовлетворительно обрабатываются резанием в термообработанном состоянии. Сплавы упрочняют закалкой (510-530°С) и искусственным старением (160-170°С, 12-15 ч). Наиболее высокие показатели прочности после искусственного старения имеет сплав АВ, но он подвержен в этом состоянии межкристаллитной коррозии, которая вызвана выделением кремния по границам зерен при искусственном старении. Сплавы АД31 и АДЗЗ по прочности уступают сплаву АВ, но превосходят

Таблица 9.5

Химический состав и механические свойства деформируемых алюминиевых сплавов

Режим технологической обработки

Механические

свойства

элементы

Li = 2,1 Zr = 0,12

Fe - 1,1 Ti - 0,1

2сч ©° и? pN

Ti = 0,06 Zr - 0,17 V = 0,1 Fe

его по коррозионной стойкости. Сплавы ЛВ, ЛД31, АДЗЗ выпускают в виде листов, труб, прутков, профилей различного сечения и других полуфабрикатов, применяемых для изготовления лопастей винтов вертолетов, рам, корпусов и переборок судов, корпусов электромоторов, сварных баков, трубопроводов.

Дуралюмииы. Сплавы Д1, Д16, Д18, Д19, ВД17 системы А1-Си-Mg отличаются хорошим сочетанием прочности и пластичности. В результате термической обработки (закалки и старения) дуралюмииы упрочняются. Превращения в деформируемых термоупрочняемых сплавах рассмотрим на сплавах алюминия

с медью. Эго допустимо, поскольку легирование их другими элементами (Mg, Мп и др.) наряду с медью или вместо нее не вносит принципиальных изменений.

Из диаграммы Л1-Си (рис. 9.4) следует, что в равновесном состоянии микроструктура сплавов состоит из твердого раствора а (0,2%Си) и включений вторичной фазы CuAl 2 , содержащей около 55,4% Си. При закалке сплавы нагревают до температуры /: :j , обеспечивающей растворение интерметаллида СиА1 2 в алюминии (выше линии предельной растворимости ME на 6-8%) и получение максимально возможной концентрации меди в твердом растворе. В процессе закалки, при быстром охлаждении в воде, медь не выделяется из твердого раствора, и таким образом получают неравновесную структуру однородного пересыщенного твердого раствора меди в алюминии (закалка без полиморфного превращения). В закаленном состоянии сплавы имеют пониженную прочность. Так, сплав Д16 в свежезакаленном состоянии имеет следующие механические свойства: а„ = 24(Н260 МПа, 8 = 22%.

В пересыщенном a-твердом растворе избыточные атомы меди распределены статистически равномерно и стремятся выделиться из него. На этом явлении основан процесс старения. Старение - это термическая обработка, при которой в сплаве после закалки (без полиморфного превращения) происходит распад пересыщенного a-твердого раствора. В зависимости от температурных условий превращения различают естественное старение - без подогрева при температуре 20°С и искусственное старение - с подогревом до температуры 100-200°С (рис. 9.5).

При естес твен пом старении в результате диффузионного перераспределения атомов меди внутри твердого раствора образуются зоны с повышенной концентрацией меди (50-52%) - зоны Гинье - Престона (ГП-I), с тем же порядком расположения атомов, что и в неупорядочном a-твердом растворе. При температурах ниже


Рис. 9.4. Часть диаграммы состояния системы А1-Си и схема изменения структуры дуралюмина (к % Си) после закалки

Продолжительность, сут.

Рис. 95. Изменение прочности дуралюмина (к % Си) при различных температурах старения

нуля зоны ГП-1 не образуются. Зоны ГП-1 представляют собой пластины диаметром 4-10 нм и толщиной 0,5-1 нм. Параметры кристаллической решетки твердого раствора в зонах ГП-1 меньше, чем в обедненном a-твердом растворе (атомный диаметр алюминия - 0,128 нм). Поэтому зоны ГП-1 деформируют a-твердый раствор (рис. 9.6), создают большие напряжения в кристалле и тормозят движение дислокаций, что приводит к упрочнению сплавов. При естественном старении в a-твердом растворе образуются лишь зоны ГП-1.

В процессе искусственного старения диффузия протекает более интенсивно. Искусственное старение происходит постадийно. Первая стадия, как и при естественном старении, сводится к образованию зон ГП-1.

Зоны ГП-1, возникшие при искусственном старении, имеют большие размеры (20 нм при температуре 100°С и 80 нм при температуре 200°С, толщиной от 1 до 4 нм) но сравнению с зонами ГП-1 после естественного старения. Увеличение выдержки при температурах от 100 до 200°С вызывают изменение зон ГП-1 (II стадия)

Рис. 9.6.

Атомы Си; О - атомы А1

и преобразование их в ГП-П с упорядоченным расположением атомов меди в алюминии. Затем следуют изменения, приближающие сплав к равновесному состоянию, и это связано с образованием фазы СиА1 2 (0"), когерентно связанной с а-твсрдым раствором.

Фаза 0" имеет тетрагональную решетку.

Четвертая стадия превращений сводится к возникновению стабильной фазы СиЛ1 2 , обособленной от матричного a-твердого раствора, и переходу сплава к исходному (до закалки) равновесному состоянию. Со стадии выделения стабильной фазы СиЛ1 2 происходит заметное разупрочнение сплава. Дальнейший нагрев до 200- 250°С приводит к укрупнению (коагуляции) интерметаллида СиА1 2 (0-фазы).

Каждая из названных стадий может протекать независимо, или они могут накладываться друг на друга. Протекание той или иной стадии зависит от состава сплава и температуры старения. Максимальное упрочнение при искусственном старении связано с начальными стадиями старения. С увеличением температуры старения быстрее достигается упрочнение, но эффект упрочнения ниже и разупрочнение наступает в течении нескольких часов.

Для деформируемых алюминиевых сплавов, упрочняемых термической обработкой, структурные изменения характеризуют терминами зонного и фазового старения. Зонное старение (образование зон ГП-1 и ГП-П) не приводит к разупрочнению сплава при любой продолжительности выдержки. В этом случае сплавы имеют повышенный предел текучести (отношение а 02 /а в = 0,6-^0,7), повышенную пластичность и низкую чувствительность к хрупкому разрушению.

Фазовое старение может быть упрочняющим и разупрочняющим, если в процессе старения происходит каогуляция частиц упрочняющих фаз (0" и 0). В результате фазового старения сплавы имеют высокий предел текучести (отношение а 0>2 /ст в достигает 0,9-0,95), в то время как пластичность, вязкость, сопротивление хрупкому разрушению и коррозии под напряжением снижаются.

Эффект старения отмечают и применяют не только в системах цветных сплавов на основе алюминия, меди, магния, титана, но и в сплавах никеля и железа.

Для сплавов Д1, Д19 температура нагрева под закалку близка к температуре плавления эвтектик, по ниже их, и равна 505°С, а для сплавов Д16, ВД17, Д18 - 500°С. В закаленном состоянии дуралю- мины (за исключением Д18) интенсивно упрочняются (временное сопротивление разрыву после естественного старения в течение 4 суток составляет 450 МПа, пластичность - 18%). Искусственному старению подвергают изделия из сплавов Д16, Д19, работающие при 125-200°С. Режим искусственного старения закаленного сплава Д16 - 190°С, продолжительность 8-12 ч. В результате искусственного старения прочность дуралюмина Д16 мало отличается от прочности в состоянии после естественного старения, но при этом повышается предел текучести и снижается пластичность.

Дуралюмины отличаются пониженной коррозионной стойкостью во влажном воздухе, речной и морской воде, нуждаются в средствах защиты от коррозии. Дуралюминиевые листы подвергают плакированию, а трубы и профили - анодной поляризации. Плакирование заключается в горячей прокатке листов дуралюмина, покрытых чистым алюминием (А7, А8). При этом алюминий сваривается сосновой и надежно защищает дуралюминиевый лист от коррозии. Толщина слоя алюминия обычно составляет 2-5% от толщины листа. Анодная поляризация в 10%-ном растворе серной кислоты полуфабрикатов из дуралюмина вызывает выделение кислорода и образование на их поверхности защитной оксидной (AI2O3) пленки, предохраняющей сплав от коррозии.

Дуралюмины хорошо свариваются точечной сваркой и нс свариваются сваркой плавлением из-за образования трещин, удовлетворительно обрабатываются резанием в закаленном и состаренном состояниях и хуже - в отожженном.

Наиболее прочный из дуралюминов сплав Д16 идет на изготовление обшивки лонжеронов, шпангоутов, стрингеров, тяг управления самолетов, силовых каркасов, кузовов автомобилей. В свежезакаленном состоянии из сплавов Д16 и Д1 изготавливают заклепки. Один из основных заклепочных сплавов - сплав Д18 в закаленном и естественно состаренном состоянии.

Высокопрочные сплавы В93, В95, В96Ц1 (см. табл. 9.5) системы А1-Zn-Mg-Си имеют повышенный предел прочности - 550-700 МПа. В качестве добавок содержат марганец, хром и цирконий, обеспечивающие неустойчивость твердого раствора, ускоряющие его распад и повышающие эффект старения. Упрочняющими фазами в сплавах являются MgZn 2 , Al 2 Mg3Zn3, Al 2 CuMg.

Высокопрочные алюминиевые сплавы подвергают закалке и искусственному старению. Сплавы закаливают с 460-470°С в холодной или горячей воде для исключения растрескивания крупногабаритных штамповок или поковок. При искусственном старении пересыщенный твердый раствор распадается с образованием дисперсных частиц упрочняющих фаз. Максимальная прочность сплавов отмечается при обработке по режиму Т1 (закалка; искусственное старение 120°С, 3-10 ч). После такой обработки сплавы имеют пониженную пластичность (7-10%) и склонны к коррозии под напряжением из-за неравномерного распада пересыщенного твердого раствора.

Старение высокопрочных сплавов по режимам Т2 и ТЗ при повышенных температурах (160-180°С) и продолжительности (10- 30 ч) увеличивает их вязкость, пластичность и сопротивление кор-

розни под напряжением. Чаще высокопрочные сплавы подвергают двухступенчатому старению при 100- 120°С, 3-10 ч (первая ступень) и 165- 185°С, 10-30 ч (вторая ступень). Первая ступень старения обеспечивает образование и равномерное распределение зон ГП. Па второй стадии при повышенных температурах и значительной продолжительности из зон ГП формируются и коагулируют частицы упрочняющих фаз. В результате двухступенчатого старения сплав В95пч имеет о н = 540-590 МПа, а 0 9= 410-470 МПа, 5 = = 10-13%.

Сплав В95 из всех высокопрочных сплавов является наиболее универсальным конструкционным материалом и находит широкое применение в авиации: для тяжелонагруженных деталей конструкций, работающих в основном в условиях сжатия (облицовка, шпангоуты, стрингеры, лонжероны самолетов).

Сплав В96Ц содержит повышенное количество основных легирующих элементов (цинка, магния, меди) и является самым прочным их всех деформируемых алюминиевых сплавов. Однако но сравнению со сплавом 1395 сплав В96Ц имеет пониженную пластичность, коррозионную стойкость. Сплав чувствителен к коррозии и различным концентраторам напряжений. Из сплава В96Ц методами горячего деформирования производят полуфабрикаты в виде труб, профилей различного сечения, поковок. Высокопрочные сплавы имеют удовлетворительную свариваемость при контактной сварке и плохую при сварке плавлением. Рабочая температура высокопрочных сплавов не превышает 120°С, так как при более высоких температурах отмечается резкое снижение их прочности, более интенсивное, чем у дуралюминов.

Высокомодульный сплав 1420 системы Al-Mg- Li обладает пониженной плотностью (2,5 г/см 3) и повышенным модулем упругости (75 000 МПа), что на 4% превышает модуль упругости сплава Д16. Сплав 1420 сваривается всеми видами сварки и обладает высокими коррозионными свойствами, близкими к характеристикам сплава АМгб.

Сплав 1420 подвергают закалке с 450°С (охлаждение на воздухе) и последующему искусственному старению при 120°С в течение 12-24 ч.

В результате закалки структура сплава состоит из пересыщенного твердого раствора магния и лития в алюминии. При искусственном старении образование зон ГП нс наблюдается. Упрочнение связано с выделением упрочняющей фазы AlLi, что не приводит к обеднению матричного твердого раствора магнием.

Сплав 1420 используют для замены в аэрокосмических изделиях дуралюминов, тем самым снижают их массу на 10-15%.

Ковочные сплавы АК6, АК8 (см. табл. 9.5) системы Al-Mg- Si-Си отличаются повышенной пластичностью при горячем деформировании и идут на изготовление поковок и штамповок. Ковка и штамповка сплавов производятся при температурах 450-470°С. В структуре сплавов наряду с твердым раствором присутствуют фазы CuAl 2 , CuMgAl 2 и Mg 2 Si. Сплавы АК6 и АК8 подвергают закалке и искусственному старению (режим Т1). Температура закалки сплавов АК6 и АК8 равна 520 и 500°С соответственно. Искусственное старение сплавов проводят по режиму 160-170°С, 12-15 ч. В результате такой обработки сплав АК8, содержащий 4,3% меди, имеет более высокие показатели прочности (см. табл. 9.5), чем сплав ЛК6, содержащий 2,2% меди. Для сплава ЛК6 характерно сочетание хорошей пластичности в горячем и холодном состояниях и достаточно высокой прочности. По вязкости разрушения сплав АК6 превосходит сплав АК8. Сплавы удовлетворительно свариваются, хорошо обрабатываются резанием. Сплавы АК6 и АК8 склонны к коррозии под напряжением и межкристаллитной коррозией. Коррозионную стойкость сплавов повышают электрохимическим оксидированием (анодированием) или путем нанесения лакокрасочных покрытий.

Сплав АК6 используют для изготовления средненагруженных деталей сложной формы (фитинги, крыльчатки, крепежные детали, подмоторные рамы). Сплав АК8, менее технологичный, чем АК6, рекомендуют для изготовления тяжслонагружснных деталей (подмоторные рамы, стыковые узлы, лонжероны, лопасти винтов вертолетов).

Жаропрочные алюминиевые сплавы Д20, 1201 (см. табл. 9.5) системы А1-Си-Мп и АК4-1 системы А1-Си-Mg-Fe-Ni способны работать при температурах до 300°С. В результате легирования сплавов цирконием, ванадием, титаном, железом и никелем тормозятся диффузионные процессы, образуются мелкодисперсные упрочняющие фазы Al 12 MnCu в сплавах Д20, 1201, Al 9 FeNi - в сплаве АК4-1, устойчивые к коагуляции при нагреве. Сплавы применяются в состоянии после закалки с температурой 535°С и искусственного старения при температуре 190°С в течение 10-18 ч. При комнатной температуре прочность жаропрочных алюминиевых сплавов мало отличается от прочности дуралюмина (420-450 МПа). При 300°С сплав Д20 обнаруживает более высокую жаропрочность (а ню = 80 МПа) по сравнению со сплавом АК4-1, для которого afoo = = 45 МПа. Сплавы Д20, 1201 свариваются хорошо, а сплав АК4-1 удовлетворительно аргоно-дуговой и контактной сварками. Коррозионная стойкость сплавов невысокая, и для защиты от коррозии на поверхность деталей из них наносят лакокрасочные покрытия или анодируют детали. Особенно тщательно необходимо защищать сварные соединения. Из сплавов АК4-1, Д20, 1201 изготавливают полуфабрикаты в виде листов, плит, профилей, используемых для деталей и сварных изделий: поршней двигателей, головок

цилиндров, крыльчаток, сварных емкостей, лопаток и дисков осевых компрессоров турбовинтовых двигателей, обшивок сверхзвуковых самолетов.

Литейные алюминиевые сплавы. Литейные алюминиевые сплавы наряду с высокими литейными свойствами (жидкотекучестью, низкой усадкой, малой склонностью к образованию горячих трещин и пор) обладают оптимальными механическими свойствами и сопротивлением коррозии в различных агрессивных средах. Этим требованиям в большей степени отвечают сплавы систем А1-Si, Al-Си, А1-Mg, в структуре которых присутствует эвтектика. Дополнительное легирование сплавов системы А1-Si медью и марганцем, системы А1-Си марганцем, никелем, хромом, системы Al-Mg цинком позволяет улучшать их механические свойства (табл. 9.6) и повысить эксплуатационные характеристики.

Сплавы системы Al-Si- Mg АК9ч (АЛ4), АК8л (АЛ34), АК7ч (АЛ9), именуемые силуминами, получили наиболее широкое рас-

Таблица 9.6

Химический состав и механические свойства литейных алюминиевых сплавов

Состояние

Механические

свойства

элементы

АК8л (АЛ 34)

АМгбМц (АЛ 28)

Примечание : в графе «Состояние сплава» буква «М» обозначает, что сплав подвергнут модифицированию, буквы «3», «Д», «К» обозначают способ литья: соответственно в землю, под давлением, в кокиль.

пространение. Сплав АК12 (АЛ2) отвечает эвтектическому составу (10-13% Si). Эвтектическая структура этого сплава состоит из грубых игольчатых кристаллов кремния на фоне a-твердого раствора. В таком состоянии сплав АК12 (АЛ2) вследствие большой хрупкости кремния имеет пониженные механические свойства (а в = 130 МПа, 5 = 1-^-2%). Повышают прочность и пластичность сплава модифицированием, когда вводят в расплав смесь солей (67% NaF + 33% NaCl) в количестве 2-3% от массы сплава, равномерным тонким слоем на поверхность расплава при 780-830°С. Присутствие в расплаве натрия смещает линии диаграммы состояния системы А1-Si (рис. 9.7) и эвтектическую точку в сторону более высоких концентраций кремния. После модифицирования эвтектика состоит из мелких кристаллов кремния и а-твердого раствора. Рост кристаллов кремния в процессе затвердевания сдерживает пленка Na 2 Si, обволакивающая их. Помимо эвтектики в структуре модифицированного сплава АК12 (АЛ2) появляются избыточные кристаллы a-твердого раствора. В результате изменения структуры улучшаются механические свойства сплава (см. табл. 9.6). Модифицированию подвергают силумины (в том числе


Рис. 97. Диаграмма состояния системы А1-Si (а) и механические свойства сплавов этой системы (6):

1 - до модифицирования; 2 - после модифицирования и легированные), содержащие более 5-6% кремния. Легированные силумины АК9ч (АЛ4), АК7ч (АЛ9) дополнительно легированы магнием, а сплав АК8л (АЛ32) - магнием и медью (см. табл. 9.6). Эти сплавы упрочняются как модифицированием, так и термической обработкой. Упрочнение сплавов, легированных магнием, связано с образованием фазы Mg 2 Si, а одновременно медью и магнием - с фазами СиА1 2 и Al,.Mg-) Cu 1 Si4. Легированные силумины АК9ч (АЛ4), АК7ч (АЛ9), АК8л (АЛ34) упрочняются термической обработкой по режимам Т1, Т4, Т5, Тб (например, для АК8л (АЛ34) - Т5: закалка 535°С, старение 175°С, б ч; для АК9ч (АЛ4) - Тб: закалка 535°С, старение 175°С, 15 ч; для АК7ч (АЛ9) - Т4: за- калка 515°С).

Сплав АК12 (АЛ2) применяют для малонагруженных деталей сложной конфигурации, сплавы АК9ч (АЛ4) и АК7ч (АЛ9) для средних и крупных деталей (корпусов компрессоров, картеров и блоков цилиндров двигателей). Отливки из сплава АК7ч (АЛ9) в закаленном состоянии (Т4) отличаются повышенной пластичностью (см. табл. 9.6), а в состоянии Тб (закалка и старение) - повышенной прочностью. Сплав АК8л (АЛ34) превосходит по прочности сплавы АК9ч (АЛ4) и АК7ч (АЛ9). Сплавы АК8л (АЛ34) и АК8М (АЛ32) предназначены для литья под давлением. Большая скорость кристаллизации при литье под давлением, присутствие в составе сплавов Мп и Ti обеспечивают формирование мстаста- бильной структуры в отливке из этих сплавов. В результате искусственного старения при 175°С без предварительной закалки (режим Т1) происходят распад пересыщенного твердого раствора и упрочнение сплава. При изготовлении деталей другими методами литья сплавы подвергают упрочняющей термической обработке (режим Т5). Сплавы АК8л (АЛ34) и АК8М (АЛ32) идут на изготовление сложных по конфигурации деталей блоков цилиндров, головок блоков и других деталей двигателей внутреннего сгорания.

Силумины отличаются высокой герметичностью, удовлетворительной обрабатываемостью резанием, хорошей свариваемостью и коррозионной стойкостью.

Высокопрочные и жаропрочные литейные сплавы АМ5 (АЛ 19) системы А1-Си-Mn, АК5М (АЛ5) системы А1-Si-Си-Mg помимо меди (основного легирующего элемента) содержат Мп (см. табл. 9.6). Сплав АМ5 (АЛ 19) по химическому составу близок к сплаву Д20. Повышенное содержание марганца и титана в сплаве АМ5 (АЛ 19) обеспечивает присутствие в его структуре наряду с твердым раствором фаз CuAl 2 , Al 12 Mn 2 Cu и AljTi. Сплав АМ5 (АЛ19) упрочняется термообработкой по режимам Т4, Т5,Т7 (Т5: закалка 545°С, 12 ч, старение 175°С, 3-6 ч) (см. табл. 9.6). Дополнительное легирование цирконием, церием и никелем (сплав АЛЗЗ) приводит к связыванию некоторого количества меди в нерастворимые фазы и образованию фаз Al 2 Ce, Al 3 Zr, Al^Cu^Ni; это уменьшает эффект термической обработки, но жаропрочность сплава АЛЗЗ выше, чем у сплава АЛ 19, так как упомянутые фазы препятствуют процессу ползучести. Сплав АМ5 (АЛ 19) хорошо сваривается и обрабатывается резанием и используется для литья крупногабаритных отливок в песчаные формы.

Сплав АК5М (АЛ5) показывает высокие прочностные характеристики в состоянии после термической обработки Т5: закалка 525°С, старение 180°С, 5 ч. При старении из пересыщенного твердого раствора выделяются мелкодисперсные частицы фаз CuAl 2 , Mg 2 Si, Al v Mg 5 Cu 4 Si 4 , упрочняющих сплав. Среди силуминов сплав АК5М (АЛ5) из-за наличия в нем меди является более прочным. По той же причине сплав имеет пониженную коррозионную стойкость. Сплав рекомендуется для деталей сложной конфигурации, рабочая температура которых не превышает 250°С.

Коррозионностойкие литейные алюминиевые сплавы АМг5Мц (АЛ28) системы AI-Mg, АЦЧМг (АЛ24) системы А1-Zn-Mg обладают наряду с высокой коррозионной стойкостью во многих агрессивных средах высокими прочностью и пластичностью (см. табл. 9.6). Сплавы системы AI-Mg имеют невысокие литейные свойства из-за большого (100-120°С) интервала кристаллизации, значительного газосодержания и сильной окисляемости. По жид- котекучести сплавы уступают силуминам. При плавке и литье сплавов системы AI-Mg их расплавы защищают от окисления специальными флюсами.

Сплав АМг5Мц (АЛ28) содержит 4,8-6,3% магния, не склонен к коррозии под напряжением и не чувствителен к образованию газовой пористости и окислению. Сплав не упрочняется термической обработкой и применяется в литом состоянии (см. табл. 9.6). Из сплава АЛ28 получают сложные отливки для деталей средней нагруженное™, сплав хорошо сваривается.

Сплав АЦ4Мг (АЛ24), обладая высокой коррозионной стойкостью, стабильными механическими свойствами, способен надежно работать при температурах до 150°С. Сплав упрочняется термической обработкой Т1 (естественное или искусственное старение без предшествующей закалки) (см. табл. 9.6) либо закаленной с 550°С (на воздухе или в кипящей воде) с последующим искусственным старением (165°С, 22 ч).

Сплавы АМг5Мц (АЛ28) и АЦ4Мг (АЛ24) способны заменить дефицитные бронзы, латуни, нержавеющие стали и обеспечить надежную работу деталей в условиях коррозионного воздействия морской воды.

Спеченные алюминиевые порошки и гранулированные сплавы

характеризуются повышенными механическими и физическими свойствами.

Спеченный алюминиевый порошок (САП) - это материал, который получают прессованием и с последующим спеканием алюминиевого порошка (пудры), представляющего собой чешуйки толщиной ~1 мкм.

Пудру получают пульверизацией жидкого алюминия и размолом полученного порошка в шаровых мельницах. Измельчение порошка увеличивает содержание оксида алюминия в порошке. При производстве САПов используют алюминиевые пудры трех марок: АПС-1, АПС-2 и АПС-3, которые содержат оксид алюминия (6-9, 9-13 и 13-18% соответственно).

Брикетирование алюминиевой пудры осуществляют под давлением 300-750 МПа. При брикетировании оксидная пленка разрывается, поверхность частиц увеличивается, неокисленные участки поверхности алюминиевых частиц вступают в контакт и происходит их схватывание. Спекание брикетов при температурах 450-500°С под давлением 400-600 МПа увеличивает контакт поверхностей неокислеиного алюминия и увеличивает силы связи между частицами алюминия. Плотность спеченного брикета возрастает с 2,6 до 7 г/см 3 , что близко к плотности литого алюминия. Из спеченных брикетов методом горячего прессования получают полуфабрикаты - листы, прутки, трубы, штамповые заготовки.

Структура сплавов САП состоит из смеси алюминия и дисперсных чешуек оксида алюминия. Частицы оксида алюминия не растворяются в алюминии и нс коагулируют, что обеспечивает стабильность структуры и свойств при температурах до 500°С (табл. 9.7). Повышенная прочность САПов вызвана дисперсностью частиц А1 2 0з, задерживающих движение и перераспределение дис-

Таблица 9.7

Состав и механические свойства спеченных и гранулируемых сплавов

технологической

обработки

Механические свойства

Si 25-30 Al - ост.

Si 25-30 Al - ост.

локаций. САПы деформируются в холодном и горячем состояниях, хорошо обрабатываются резанием, удовлетворительно свариваются контактной и аргоно-дуговой сварками. Из сплавов САП изготавливают поршневые штоки, лопатки компрессоров, турбин и вентиляторов.

Спеченные алюминиевые ставы (САС) изготавливают по той же технологии, что и САПы, но порошки получают распылением сплавов заданного состава. Так, основу сплава САС-1 составляет сплав системы А1-Si-Ni (25-30% Si, 5-7% Ni), a CAC-2 - сплав системы Al-Si-Fe (25-30% Si, 5-7% Fe).

Сплав САС-1 содержит в структуре дисперсные и равномерно распределенные включения кристаллов кремния и никелевых ин- терметаллидов в виде пластин, оказывающих решающее влияние на уровень механических свойств (см. табл. 9.7). Сплавы отличаются низким коэффициентом термического расширения. Сплавы САП и САС могут длительное время работать при температуре 300-500°С и идут на обшивку летательных аппаратов, дисков и лопаток компрессоров.

Гранулированные сплавы получают компактированием гранул диаметром 1-4 мм, полученных при очень высоких скоростях охлаждения (10 3 -10 4 °С/с). Высокие скорости охлаждения всплавах алюминия с переходными металлами (Mn, Cr, Ir, Ti, V) при раскислении расплава позволяют получить пересыщенные твердые растворы на основе А1, концентрация этих компонентов превышает предельную растворимость в несколько раз. Такие твердые растворы получили название аномально пересыщенных. Гранулы из этих сплавов имеют гетерогенную структуру, однако первичные интер- металлидиые включения дисперсные и равномерно распределены по объему. Из гранул горячим прессованием получают полуфабрикаты. В процессе горячей деформации при производстве полуфабрикатов аномально пересыщенные растворы распадаются с образованием дисперсных частиц интсрмсталлидов Al 3 Zn и др. Таким образом, технологический нагрев при изготовлении полуфабрикатов в виде листов, прутков, профилей является упрочняющим старением. Роль закалки для таких сплавов выполняет кристаллизация при больших скоростях охлаждения.

Сплав 01419 системы Al-Сг-Zn является гранулируемым дисперсионно твердеющим, упрочняемым в результате выделения дисперсных фаз Al 3 Zn, AlyCr (см. табл. 9.7). Стабильная структура сплава 01419 при нагреве до 350°С придает ему высокую жаростойкость.

В сплаве ПВ90 гранулы имеют состав сплавов В95, В96Ц системы Al-Zn-Mg-Си, упрочняемых термической обработкой (режим Т1). Сплав ПВ90, обработанный но режиму Т1, имеет повышенные прочностные характеристики (см. табл. 9.7) и по прочности и температуре рекристаллизации превосходит серийные деформируемые

алюминиевые сплавы. Он хороню обрабатывается резанием, полируется и отличается стабильностью размеров. Детали из сплава ПВ90 применяют в узлах трения и ответственных конструкциях высокоточных приборов.

Композиционные алюминиевые сплавы. В качестве материала матрицы (см. параграф 11.1) применяют технически чистый алюминий (АД1) и сплавы АДЗЗ, В95, САП-1 и др. Для армирования матриц служат волокна бора и углеродные. Так, сплавы ВКА-1, ВКА-2 получают армированием борными волокнами алюминиевых сплавов АД1, АДЗЗ. Технология получения композитов включает операции намотки борного волокна на оправку, его фиксацию путем плазменного напыления матричного сплава, раскройку заготовок и их прессование или прокатку. Сплав ВКА-1 (табл. 9.8), содержащий 50% (объемных) борных волокон, наряду с высокими показателями прочности и жесткости обладает хорошей технологичностью и конструкционной надежностью. В интервале температур 80-500°С сплав ВКА-1 но прочности и жесткости превосходит промышленные сплавы В95 и АК4-1.

Таблица 9.8

Состав и свойства некоторых композиционных алюминиевых сплавов

*,**,***_ пределы прочности при температурах 300,400, 500°С соответственно.

Алюминиевые сплавы, армированные стальной проволокой (КАС), получают методом прокатки в вакууме. В качестве материала матрицы в КАС-1 используют сплав АВ или материал САН-1 (см. табл. 9.8). Сплав сохраняет высокие кратковременную и длительную прочности при повышенных температурах.

Накладки из КАС-1 применяют в целях ограничения распространения трещин путем закрепления их на деталях из алюминиевых сплавов методами диффузионной сварки, клеесварки и приклеивания.

В современной промышленности используется огромное количество материалов. Пластик и композиты, графит и прочие вещества... Но металл всегда остается актуальным. Из него делают гигантские строительные конструкции, он используется для создания разнообразных машин и прочей техники.

А потому классификация металла играет в промышленности и науке немаловажную роль, поскольку, зная ее, можно подобрать наиболее подходящий тип материала для той или мной цели. Именно этой теме и посвящена данная статья.

Общее определение

Металлами называются простые вещества, которые в обычных условиях характеризуются наличием нескольких отличительных признаков: высокой теплопроводностью и проводимостью электрического тока, а также ковкостью. Пластичны. В твердом состоянии характеризуются кристаллическим строением на атомарном уровне, а потому имеют высокие прочностные показатели. Но есть еще и сплавы, являющиеся их производными. Что это такое?

Так называются материалы, полученные из двух и более веществ путем их нагревания свыше температуры плавления. Учтите, что бывают сплавы металлические и неметаллические. В первом случае в составе должно присутствовать не менее 50 % металла.

Впрочем, не будем отвлекаться от тематики статьи. Итак, какая же бывает классификация металла? В общем-то, делить его довольно просто:

  1. Черные металлы.
  2. Цветные металлы.

К первой категории относится железо и все сплавы на его основе. Все прочие металлы являются цветными, впрочем, как и их соединения. Необходимо рассмотреть каждую категорию более подробно: несмотря на крайне скучную общую классификацию, на самом деле все куда сложнее. А если вспомнить, что существуют еще драгметаллы... И они тоже бывают разными. Впрочем, классификация драгоценных металлов еще проще. Всего их насчитывается восемь штук: золото и серебро, платина, палладий, рутений, осмий, а также родий и иридий. Наиболее ценными являются платиноиды.

Собственно, классификация и того скучнее. Так называются (в ювелирном деле) все те же серебро, золото и платина. Впрочем, довольно о «высоких материях». Пора поговорить о более распространенных и ходовых материалах.

Начнем мы с обзора разных сортов стали, которая как раз таки является производным самого ходового черного металла - железа.

Что такое сталь?

Железа и некоторых присадок, в котором содержится не более 2,14 % атомарного углерода. Классификация этих материалов крайне обширна, причем она учитывает: химический состав и способы производства, наличие или же отсутствие вредных примесей, а также структуру. Впрочем, наиболее важным признаком является химический состав, так как он влияет на марку и название стали.

Углеродистые разновидности

В этих материалах вообще нет легирующих добавок, но при этом технология их изготовления допускает некоторое количество прочих примесей (как правило, марганца). Так как содержание этих веществ колеблется в пределах 0,8-1 %, какого-то влияния на прочностные, механические и химические свойства стали они не оказывают. Используется эта категория в строительстве и производстве различного инструмента. Разумеется, классификация металла на этом далеко не закончена.

Конструкционные углеродистые стали

Чаще всего используются для возведения различных конструкций промышленного, военного или бытового назначения, но нередко их применяют для выпуска инструментов и механизмов. В этом случае содержание углерода ни в коем случае не должно превышать 0,5-0,6 %. Они должны иметь предельно высокую прочность, которая определяется целой когортой сертифицированных международными агентствами испытаний (σВ, σ0,2, δ, ψ, KCU, HB, HRC). Бывают двух видов:

  • Обыкновенные.
  • Качественные.

Как несложно догадаться, первые идут на строительство различных инженерных конструкций. Качественная же используется исключительно для выпуска надежных инструментов, применяемых в машиностроении и прочих и производства.

Что касается этих материалов, то на их поверхности допускается коррозия металла. Классификация же сталей прочих типов предусматривает наличие куда более жестких к ним требований.

Инструментальные углеродистые стали

Их сфера — точное машиностроение, изготовление инструментов для научной сферы и медицины, а также прочих промышленных отраслей, в которых требуется повышенная прочность и точность. В них содержание углерода может колебаться от 0,7 до 1,5 %. Такой материал обязан обладать очень высокой прочностью, быть устойчивым к факторам износа и предельно высоким температурам.

Легированные стали

Так называют материалы, в которых, помимо естественных примесей, содержится значительное количество искусственно добавляемых легирующих присадок. К ним относится хром, никель, молибден. Помимо этого, в легированных сталях также может быть марганец и кремний, содержание которых чаще всего не превышает 0,8-1,2 %.

В этом случае классификация металла подразумевает их деление на два типа:

  • Стали с низким содержанием присадок. В сумме их бывает не более 2,5 %.
  • Легированные. В них добавок может быть от 2,5 до 10 %.
  • Материалы с высоким содержанием добавок (более 10 %).

Эти типы также подразделяются на подвиды, как и в предыдущем случае.

Легированная конструкционная сталь

Как и все прочие разновидности, активно используются в машиностроении, возведении зданий и прочих сооружений, а также в промышленности. Если сравнивать их с углеродистыми разновидностями, то такие материалы выигрывают по соотношению прочностных характеристик, пластичности и вязкости. Кроме того, они обладают высокой устойчивостью к воздействию экстремально низких температур. Из них делают мосты, самолеты, ракеты, инструменты для высокоточной промышленности.

Легированные инструментальные стали

В принципе, по характеристикам очень схожи с рассмотренным выше типом. Могут быть использованы в следующих целях:

  • Производство режущих, а также высокоточных измерительных приборов и инструментов. В частности, производят из этого материала токарные резцы по металлу, классификация которых напрямую зависит от стали: ее марка обязательно отпечатывается на изделии.
  • Из них же делают штампы для холодного и горячего проката.

специального назначения

Как можно понять из названия, эти материалы обладают какими-то специфическими характеристиками. К примеру, встречаются жаропрочные и жаростойкие виды, а также всем известная нержавеющая сталь. Соответственно, сфера их применения включает в себя производство машин и инструментов, которые будут работать в особо сложных условиях: турбины для двигателей, печи для выплавки металла и др.

Строительные стали

Стали со средним содержанием углерода. Применяются для выпуска широчайшей номенклатуры различных строительных материалов. В частности, именно из них делают профили (фасонный и листовой), трубы, уголки и т. д. Очевидно, что при выборе определенной категории металла особое внимание обращают на прочностные характеристики стали.

Кроме того, еще задолго до строительства все характеристики многократно просчитываются на примере математических моделей, так что в большинстве случаев тот или иной вид проката может быть изготовлен по индивидуальным требованиям заказчика.

Арматурные стали

Как вы наверняка догадались, сфера их применения — армирование блоков и готовых конструкций из железобетона. Выпускают их в виде стержней или проволоки с большим диаметром. Материалом служит или углеродистая, или сталь с низким содержанием легирующих присадок. Бывает двух видов:

  • Горячекатаная.
  • Термически и механически упрочненная.

Котельные стали

Используются для выпуска котлов и цилиндров, а также прочих сосудов и арматуры, которым предстоит работать в условиях повышенного давления при различных температурных режимах. Толщина деталей в этом случае может варьироваться от 4 до 160 мм.

Автоматные стали

Так называются материалы, которые хорошо поддаются обработке путем их разрезания. Обладают также высокой обрабатываемостью. Все это делает такую сталь идеальным материалом для автоматизированных линий производств, которых с каждым годом становится все больше и больше.

Подшипниковые стали

Эти виды по своему типу относятся к конструкционным разновидностям, но их состав роднит их с инструментальным. Отличаются высокими прочностными характеристиками и огромной устойчивостью к износу (истиранию).

Нами были рассмотрены основные свойства и классификация металлов этого класса. На очереди - еще более распространенный и известный чугун.

Чугуны: классификация и свойства

Так называется материал, представляющий собой сплав железа и углерода (а также некоторых прочих присадок), причем содержание С колеблется от 2,14 до 6,67 %. Чугун, как и сталь, различают по химическому составу, способам производства и по количественному объему содержащегося в нем углерода, а также по сферам применения в повседневной жизни и промышленности. Если в чугуне нет присадок, его называют нелегированным. В противном случае — легированным.

Классификация по назначению

  1. Бывают предельными, которые практически всегда используются для последующей переработки в сталь.
  2. Литейные разновидности, используемые для отливки изделий самой разной конфигурации и сложности.
  3. Специальные, по аналогии со сталями.

Классификация по типам химических добавок

  • Белый чугун. Характеризуется тем, что углерод в его структуре связан практически полностью, находясь там в составе различных карбидов. Его очень легко отличить: на изломе он белый и блестящий, характеризуется высочайшей твердостью, но при этом крайне хрупок, с огромным трудом поддается механической обработке.
  • Половинчатый отбеленный. В верхних слоях отливки от неотличим от белого чугуна, в то время как сердцевина ее — серая, содержащая в своей структуре большое количество свободного графита. В общем-то, сочетает в себе признаки обоих типов. Довольно прочен, но в то же время куда легче поддается обработке, да и с хрупкостью дела обстоят значительно лучше.
  • Серый. Содержит в своем составе много графита. Прочный, достаточно износостойкий, хорошо поддается обработке.

Мы не случайно делаем упор на графит. Дело в том, что от его содержания и пространственной структуры зависит классификация металлов и сплавов в конкретном случае. В зависимости от этих характеристик они делятся на перлитные, феррито-перлитные и ферритные.

Сам графит в каждом из этих может присутствовать в четырех различных формах:

  • Если он представлен пластинками и «лепестками», то относится к пластинчатой разновидности.
  • Если в материале есть включения, которые по своему внешнему виду напоминают червяков, то речь идет о вермикулярном графите.
  • Соответственно, различные плоские, неравномерные включения говорят о том, что перед вами — хлопьевидная разновидность.
  • Сферические, полусферические элементы характеризуют шаровидную форму.

Но и в этом случае классификация металлов и сплавов еще неполная! Дело в том, что эти примеси, каким бы странным это ни показалось, напрямую влияют на прочность материала. Итак, в зависимости от формы и пространственного положения включений, чугуны подразделяются на следующие категории:

  • Если в материале имеются вкрапления пластинчатого графита, то это обычный серый чугун (СЧ).
  • По аналогии с названием «присадки», наличие вермикулярных частиц характеризует вермикулярный материал (ЧВГ).
  • Хлопьевидные включения содержит ковкий чугун (КЧ).
  • Шаровидный «наполнитель» характеризует высокопрочный чугун (ВЧ).

Вашему вниманию была представлена краткая классификация и свойства металлов, которые относятся к «черной» категории. Как видите, несмотря на повсеместно распространенное заблуждение, они весьма разнообразны, сильно различаются по своей структуре и физическим свойствам. Казалось бы, чугун — обыденный и распространенный материал, но... Даже он имеет несколько совершенно разных видов, и некоторые из них так же не похожи друг на друга, как сам чугун и листовая сталь!

Отходы — в доходы!

А имеется ли какая-то классификация Ведь ежегодно в отвал уходят миллионы тонн самых разнообразных материалов. Неужели они скопом отправляются на переплавку, не пройдя никакой отбраковки и сортировки? Разумеется, нет. Всего различают девять категорий:

  • 3А. Стандартные отходы черного металла, в том числе и габаритные, особо крупные куски. Вес каждого фрагмента — не менее килограмма. Как правило, толщина кусков не превышает шести миллиметров.
  • 5А. В этом случае лом негабаритный. Толщина кусков — более шести миллиметров.
  • 12А. Данная категория подразумевает смесь двух вышеописанных разновидностей.
  • 17А. Лом чугунный, габаритный. Вес каждого куска - не менее полукилограмма, но не более 20 кг.
  • 19А. Аналогичен предыдущему классу, но отходы негабаритные. Кроме того, допускается некоторое содержание фосфора в материале.
  • 20А. Чугунный лом, наиболее негабаритная категория. Допускаются куски по пять тонн весом. Как правило, сюда входит демонтированное, списанное промышленное и военное оборудование. Как видите, классификация и свойства металлов в этой категории довольно-таки однотипны.
  • 22А. И снова негабаритный чугунный лом. Отличие заключается в том, что в этом случае к категории отходов относится отслужившее и списанное сантехническое оборудование.
  • Микс. Смешанный лом. Важно! Не допускается содержимое следующего типа: и проволока металлическая, а также оцинкованные детали.
  • Оцинковка. Как понятно из названия, сюда входит весь лом, в составе которого имеются оцинкованные фрагменты.

Такова была классификация черных металлов. А сейчас мы обсудим их цветных «коллег», которые играют громадную роль во всей современной промышленности и производстве.

Цветные металлы

Так называют все прочие элементы, которые имеют металлическое атомарное строение, но при том не относятся к железу и его производным. В англоязычной литературе можно встретить термин "нежелезный металл", который является синонимичным понятием. Какая имеется классификация цветных металлов?

Бывают следующие группы, разделение которых идет сразу по нескольким признакам: легкие и тяжелые, благородные, рассеянные и тугоплавкие, радиоактивные и редкоземельные разновидности. Многие из цветных металлов вообще относятся к категории редких, так как их общее количество на нашей планете сравнительно невелико.

Применяются они для производства деталей и приборов, которые должны работать в условиях агрессивной среды, трения, или при необходимости (датчики, к примеру) обладать высокой степенью теплопроводности или проводимости электрического тока. Кроме того, они востребованы в военной, космической и авиационной отраслях, где требуется максимальная прочность при сравнительно небольшой массе.

Заметим, что особняком стоит классификация тяжелых металлов. Впрочем, как таковой ее нет, но в состав этой группы входит медь, никель, кобальт, а также цинк, кадмий, ртуть и свинец. Из них в промышленных масштабах используется только Cu и Zn, о которых мы упомянем в дальнейшем.

Алюминий и сплавы на его основе

Алюминий, «крылатый металл». Различают три его вида (в зависимости от степени химической чистоты):

  • Высшая проба (особая чистота) (99,999 %).
  • Высокая чистота.
  • Техническая проба.

Последний вид присутствует на рынке в виде листов, разнообразного профиля и проволоки с разным сечением. Обозначается в торговле как АД0 и АД1. Учтите, что даже в алюминии высокой пробы нередко присутствуют вкрапления Fe, Si, Gu, Mn, Zn.

Сплавы

Что представляет собой классификация цветных металлов в этом случае? В принципе, ничего сложного. Существуют:

  • Дюралюмины.
  • Авиали.

Дюралюминами называются сплавы, в которые добавляют медь и магний. Кроме того, бывают материалы, где в качестве присадок используется медь и магний. Авиалями также называются сплавы, но они содержат намного больше добавок. Основными являются магний и кремний, а также железо, медь и даже титан.

В принципе, данный вопрос куда подробнее рассматривает материаловедение. Классификация металлов же на алюминии и его видах не заканчивается.

Медь

На сегодняшний день различают (содержание чистого вещества 97,97 %) и особо чистую, вакуумную (99,99 %). В отличие от других цветных металлов, на механические и химические качества меди чрезвычайно сильно влияют даже мельчайшие примеси каких-то присадок.

Сплавы

Делятся на две большие группы. Материалы эти, к слову, известны человечеству уже не одну тысячу лет:

  • Латунь. Так называется соединение меди и цинка.
  • Бронза. Медный сплав, в состав которого входит уже не цинк, а олово. Впрочем, бывают и такие бронзы, в которых насчитывается до десяти присадок.

Титан

Металл этот редкий и весьма дорогой. Отличается низким весом, невероятной прочностью, малой вязкостью. Заметим, что подразделяется на несколько видов: ВТ1-00 (в этом материале количество примесей ≤ 0,10 %), ВТ1-0 (объем присадок ≤ 0,30 %). Если общая сумма посторонних примесей ≤ 0,093 %, то такой материал в производстве называют иодидным титаном.

Титановые сплавы

Сплавы этого материала делятся на два вида: деформируемые и линейные. Кроме того, различают особые их подвиды: жаростойкие, повышенной пластичности. Бывают еще упрочняемые и не упрочняемые разновидности (зависит от термической обработки).

Собственно, нами была полностью рассмотрена классификация цветных металлов и сплавов. Надеемся, что статья была вам полезна.

Материаловедение: конспект лекций Алексеев Виктор Сергеевич

4. Классификация сплавов. Железо и его сплавы

Сталь и чугун – основные материалы в машиностроении. Они составляют 95 % всех используемых в технике сплавов.

Сталь – это сплав железа с углеродом и другими элементами, содержащий до 2,14 % углерода. Углерод – важнейшая примесь стали. От его содержания зависят прочность, твердость и пластичность стали. Кроме железа и углерода, в состав стали входят кремний, марганец, сера и фосфор. Эти примеси попадают в сталь в процессе выплавки и являются ее неизбежными спутниками.

Чугун – сплав на железной основе. Отличие чугуна от стали заключается в более высоком содержании в нем углерода – более 2,14 %. Наибольшее распространение получили чугуны, содержащие 3–3,5 % углерода. В состав чугунов входят те же примеси, что и в стали, т. е. кремний, марганец, сера и фосфор. Чугуны, у которых весь углерод находится в химическом соединении с железом, называют белыми (по виду излома), а чугуны, весь углерод которых или большая его часть представляет графит, получили название серых. В белых чугунах всегда имеется еще одна структурная составляющая – ледебурит. Это эвтектика, т. е. равномерная механическая смесь зерен аустенита и цементита, получающаяся в процессе кристаллизации, в ней 4,3 % углерода. Ледебурит образуется при температуре +1147 °C.

Феррит – твердый раствор небольшого количества углерода (до 0,04 %) и других примесей в? – железе. Практически это чистое железо. Цементит – химическое соединение железа с углеродом – карбид железа.

Перлит – равномерная механическая смесь в сплаве феррита и цементита. Такое название эта смесь получила потому, что шлиф при ее травлении имеет перламутровый оттенок. Так как перлит образуется в результате процессов вторичной кристаллизации, его называют эвтектоидом. Он образуется при температуре +727 °C. В нем содержится 0,8 % углерода.

Перлит имеет две разновидности. Если цементит в нем расположен в виде пластинок, его называют пластинчатым, если же цементит расположен в виде зерен, перлит называют зернистым. Под микроскопом пластинки цементита кажутся блестящими, потому что обладают большой твердостью, хорошо полируются и при травлении кислотами разъедаются меньше, чем пластинки мягкого феррита.

Если железоуглеродистые сплавы нагреть до определенных температур, произойдет аллотропическое превращение? -железа в? -железо и образуется структурная составляющая, которая называется аустенитом.

Аустенит представляет собой твердый раствор углерода (до 2,14 %) и других примесей в? -железе. Способность углерода

растворяться в железе неодинакова при различных температурах. При температуре +727 °C ? -железо может растворять не более 0,8 % углерода. При этой же температуре происходит распад аустенита с образованием перлита. Аустенит – мягкая структурная составляющая. Он отличается большой пластичностью, не обладает магнитными свойствами.

При изучении структурных составляющих железоуглеродистых сплавов установлено, что они при комнатной температуре всегда состоят из двух структурных элементов: мягкого пластичного феррита и твердого цементита, упрочняющего сплав.

Из книги Работы по металлу автора Коршевер Наталья Гавриловна

Железо Оно было известно уже в древности. А в Средневековье различали не только сталь, железо и чугун, но и различные их марки. Например, клинки оружия могли изготавливаться из обычной стали или из дамасской – знаменитого булата. Кузнецы того времени, конечно же, не знали,

Из книги Загадка булатного узора автора Гуревич Юрий Григорьевич

Медь и сплавы Довольно часто домашние слесари отдают предпочтение меди (удельный вес 9,0 г/см2), поскольку ее мягкость и пластичность позволяют добиваться точности и высокого качества при изготовлении всевозможных деталей и изделий.Чистая (красная) медь – прекрасный

Из книги Материаловедение: конспект лекций автора Алексеев Виктор Сергеевич

«Белое железо» индийского царя Пора Во второй половине I тысячелетия до нашей эры железо знали уже многие страны и народы. Из него изготовляли плуг и топор, кинжал и меч. Оружейники старались сделать кинжалы, мечи прочными и упругими, твердыми и острыми. В древности это

Из книги Боевые корабли автора Перля Зигмунд Наумович

ЛЕКЦИЯ № 5. Сплавы 1. Строение металлов Металлы и их сплавы – основной материал в машиностроении. Они обладают многими ценными свойствами, обусловленными в основном их внутренним строением. Мягкий и пластичный металл или сплав можно сделать твердым, хрупким, и наоборот.

Из книги Материалы для ювелирных изделий автора Куманин Владимир Игоревич

1. Диаграмма железо-цементит Диаграмма железо-цементит охватывает состояние железоуглеродистых сплавов, которые содержат до 6,67 % углерода. Рис. 7. Диаграмма состояния железоуглеродистых сплавов (сплошные линии – система Fe-Fe 3 C; штриховые – система Fe-C)Углеродистые

Из книги Фильтры для очистки воды автора Хохрякова Елена Анатольевна

2. Медные сплавы Медь относится к числу металлов, известных с глубокой древности. Раннему знакомству человека с медью способствовало то, что она встречается в природе в свободном состоянии в виде самородков, которые иногда достигают значительных размеров. В настоящее

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

3. Алюминиевые сплавы Название «алюминий» происходит от латинского слова alumen – так за 500 лет до н. э. называли алюминиевые квасцы, которые использовались для протравливания при крашении тканей и дубления кож.По распространенности в природе алюминий занимает третье

Из книги автора

4. Титановые сплавы Титан – металл серебристо-белого цвета. Это один из наиболее распространенных в природе элементов. Среди других элементов по распространенности в земной коре (0,61 %) он занимает десятое место. Титан легок (плотность его 4,5 г/см 3), тугоплавок

Из книги автора

5. Цинковые сплавы Сплав цинка с медью – латунь – был известен еще древним грекам и египтянам. Но выплавка цинка в промышленных масштабах началась лишь в XVII в.Цинк – металл светло-серо-голубоватого цвета, хрупкий при комнатной температуре и при 200 °C, при нагревании до

Из книги автора

Пар и железо В последние десятилетия XVIII века на заводах и фабриках Европы произошли большие изменения. Были изобретены паровая и другие машины для металлургических, машиностроительных и текстильных заводов и фабрик. Машинное производство вытесняло ручной труд. На

Из книги автора

7.4. Сплавы меди, имитирующие золотые и серебряные сплавы С целью удешевления художественных изделий при производстве недорогих украшений широко используются томпак, латунь, мельхиор, нейзильбер; при изготовлении художественных изделий – бронзы.Сплавы меди с цинком,

Из книги автора

10. Серебро и его сплавы Серебро – химический элемент, металл. Атомный номер 47, атомный вес 107,8. Плотность 10,5 г/см3. Кристаллическая решетка – гранецентрированная кубическая (ГЦК). Температура плавления 963 °C, кипения 2865 °C. Твердость по Бринеллю 16,7.Серебро – металл белого

Из книги автора

11. Золото и его сплавы Золото – химический элемент, металл. Атомный номер 79, атомный вес 196,97, плотность 19,32 г/см3. Кристаллическая решетка – кубическая гранецентрировапная (ГЦК). Температура плавления 1063 °C, кипения 2970 °C. Твердость по Бринеллю – 18,5.Золото – металл желтого

Из книги автора

Железо общее Железо – один из самых распространенных элементов в природе. Его содержание в земной коре составляет около 4,7 % по массе, поэтому железо, с точки зрения его распространенности в природе, принято называть макроэлементом.В природной воде железо содержится в

Из книги автора

27. Строение и свойства железа; метастабильная и стабильная фазовые диаграммы железо-углерод. Формирование структуры углеродистых сталей. Определение содержания углерода в стали по структуре Сплавы железа с углеродом являются самыми распространенными металлическими

Из книги автора

47. Титан и его сплавы Титан и сплавы на его основе обладают высокой коррозионной стойкостью и удельной прочностью. Недостатки титана: его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости.Азот, углерод, кислород и водород, упрочняя титан,