Времени ожидания в очереди онлайн. Среднее время ожидания обслуживания заявки в очереди


Несомненно, в нашем сознании образ функции ассоциируется с равенством и соответствующей ему линией – графиком функции. Например, - функциональная зависимость, графиком которой является квадратичная парабола с вершиной в начале координат и направленными вверх ветвями; - функция синуса, известная своими волнами.

В этих примерах в левой части равенства находится y , а в правой части – выражение, зависящее от аргумента x . Другими словами, имеем уравнение, разрешенное относительно y . Представление функциональной зависимости в виде такого выражения называется явным заданием функции (или функцией в явном виде ). И этот тип задания функции является для нас наиболее привычным. В большинстве примеров и задач нам предстают именно явные функции. Про дифференцирование функций одной переменной, заданных в явном виде, мы уже в деталях поговорили.

Однако, функция подразумевает соответствие между множеством значений величины x и множеством значений y , причем это соответствие НЕ обязательно устанавливается какой-либо формулой или аналитическим выражением. То есть, существует множество способов задания функции помимо привычного .

В данной статье мы рассмотрим неявные функции и способы нахождения их производных . В качестве примеров функций, заданных неявно, можно привести или .


Как Вы заметили, неявная функция определяется соотношением . Но не все такие соотношения между x и y задают функцию. Например, ни одна пара действительных чисел x и y не удовлетворяет равенству , следовательно, это соотношение неявную функцию не задает.

Может неявно определять закон соответствия между величинами x и y , причем каждому значению аргумента x может соответствовать как одно (в этом случае имеем однозначную функцию) так и несколько значений функции (в этом случае функцию называют многозначной). К примеру, значению x = 1 соответствует два действительных значения y = 2 и y = -2 неявно заданной функции .

Неявную функцию привести к явному виду далеко не всегда возможно, иначе не пришлось бы дифференцировать сами неявные функции. Например, - не преобразовывается к явному виду, а - преобразовывается.

Теперь к делу.

Чтобы найти производную неявно заданной функции, необходимо продифференцировать обе части равенства по аргументу x , считая y – функцией от x , и после этого выразить .

Дифференцирование выражений, содержащих x и y(x) , проводится с использованием правил дифференцирования и правила нахождения производной сложной функции . Давайте сразу подробно разберем несколько примеров, чтобы дальше не было вопросов.


Пример.

Продифференцировать выражения по x , считая y функцией от x .

Решение.

Так как y – это функция от x , то - это сложная функция. Ее можно условно представить как f(g(x)) , где f – функция возведения в куб, а g(x) = y . Тогда, по формуле производной сложной функции имеем: .

При дифференцировании второго выражения выносим константу за знак производной и действуем как в предыдущем случае (здесь f – функция синуса, g(x) = y ):

Для третьего выражения применяем формулу производной произведения:

Последовательно применяя правила, продифференцируем последнее выражение:

Вот теперь можно переходить к нахождению производной неявно заданной функции, для этого все знания есть.

Пример.

Найти производную неявной функции .

Решение.

Производная неявно заданной функции всегда представляется в виде выражения, содержащего x и y : . Чтобы прийти к такому результату, продифференцируем обе части равенства:

Разрешим полученное уравнение относительно производной:

Ответ:

.

ЗАМЕЧАНИЕ.

Для закрепления материала решим еще пример.

Пери Куклин (Perry Kuklin)

Каждый владелец бизнеса со всеми своими менеджерами хотел бы ежедневно и еженощно видеть не только растущие прибыли, но и счастливых, полностью удовлетворённых покупателей. Один из путей достижения этой цели - создание в грядущем 2014 году лучших условий для ожидающих в очереди клиентов. Вот пять простых способов:

1. Развлеките посетителей

Скопившихся в очереди покупателей надо чем-то отвлечь. А поскольку сегодняшняя культура настроена на все виды экранного действа, занятие ваших очередей созерцанием дисплеев займёт всё внимание посетителей и в их памяти не отложатся связанные с ожиданием отрицательные эмоции.

2. Вперёд, в виртуальность

Электронная очередь – вот на чём всё ещё спотыкаются многие компании. Как такая «куча мала» может сработать в вашу пользу, если вы всё время были зависимы от классической очереди типа «кто последний, я за вами»?

Никогда не забывайте, что большинство людей высоко ценят своё время и свободу действий. Создание электронной очереди глушит в посетителях чувство потери времени и дискомфорт от вынужденного выстраивания в ряд. При наличии электронной очереди клиенты могут присесть, заняться чем-то, кроме утомительного ожидания, да просто насладиться возможностью делать что угодно, без необходимости топтаться в очереди.

3. Следите за очередями

Разрешение проблемы очередей не только в создании более комфортных условий для покупателей; рассмотрите вопрос с точки зрения менеджмента – в конечном итоге это принесёт выгоду вам и удовлетворение покупателям.

Отслеживание движения очереди в реальном времени позволяет ответственным за это менеджерам в любое мгновение держать руку на пульсе каждой из очередей. Для информирования менеджера торгового зала о том, что где-то произошёл сбой, можно настроить любую форму извещения (текстовое сообщение, электронное письмо и пр.). Так он сразу узнает, что персонал компании тормозит, очереди движутся слишком медленно и т.д.

Отслеживание очередей позволяет также фиксировать рекордные показатели скорости их движения, что является бесценной информацией для менеджеров. На её основе они могут прогнозировать периоды пиков и спадов нагрузки, соответственно маневрируя персоналом и количеством работающих кассовых терминалов.

4. Добавьте немного мобильности

Общайтесь с покупателями в очереди самым доступным сегодня способом – через смартфоны. В электронную очередь можно привнести элемент мобильности, позволяющий клиентам через телефон регистрировать своё место в очереди и общаться с персоналом в текстовом режиме, когда их очередь уже подходит.

Развлекательному элементу, описанному выше, тоже не лишне придать мобильности. На экраны смартфонов можно выводить информацию о том, как клиентам улучшить свой покупательский опыт (подписка на купоны, дисконтные карты, грядущие промо-акции и, разумеется, оставшееся время ожидания в очереди).

5. Совместите трансляцию на смартфоны с мерчендайзингом

В розничной торговле решение проблемы очередей воистину элементарно. Клиенты могут увидеть товар и отметить его преимущества самостоятельно, но если представить им изделие в действии, то можно укрепить их стремление к покупке, которое до этого момента могло быть не слишком уверенным. Подумайте вот о чём: в интернет-торговле для увеличения конверсии и уровней продаж широко используются видеоматериалы. Что мешает применять эту технику в оффлайн торговле?

Воспользуйтесь тем, что у покупателя в руках дивайс, который может служить вашей витриной. Предложите клиенту посмотреть видеоролик с хорошо распродающимся товаром, рассказывающий о его особенностях; или даже видеозапись одобрительных высказываний о нём довольных покупателей. Доводя до томящихся в очереди людей такого рода информацию, да ещё с одновременной её прокруткой на больших дисплеях в зоне видимости, вы заботитесь об удовлетворении двух крайне важных потребностей: развлечение клиентов и увеличение продаж компании.

Ожидание в очереди становится последним впечатлением покупателя о вашем бизнесе (представьте себе розничный магазин), а последние слова разговора запоминаются лучше всего – это аксиома. В ряде случаев это вообще основа клиентского опыта (представьте себе аэропорт). Всегда найдутся пути улучшить взаимодействие с людьми, которые пользуются услугами вашего бизнеса, при этом одна из лучших точек для старта – изменение организации очередей.

Перевод Леонида Пеленицына

Перед выходом на передачу любой, исходящий из процессора ЭВМ, блок должен некоторое время ожидать в очереди. В общем случае при использовании относительных приоритетов обработка сообщений организуется по схеме рис. 11

Сообщениям типа Z 1 ,…,Z n присвоены относительные приоритеты 1,…,n соответственно. Сообщение Z p , поступившее в систему, и ожидающее передачи, заносится в очередь О р, в которой хранятся сообщения приоритета Р. В очереди О р сообщения упорядочены по времени их поступления. Когда процессор Пр заканчивает передачу ранее обслуживаемого сообщения, то управление передается программе "ДИСПЕТЧЕР”. Программа выбирает для очередной передачи сообщение с наивысшим приоритетом - сообщение Z i , если очереди более старших приоритетов О 1 ,..,О i-1 не содержат сообщений (т.е. оказываются пустыми). Выбранное для передачи сообщение захватывает исходящий канал на все время передачи. Если в систему поступает n простейших потоков сообщений с интенсивностями, а длительность передачи сообщений каждого типа имеют средние значения и вторые начальные моменты, соответственно, то среднее время ожидания сообщений, имеющих приоритет k, определится соотношением

Используя понятие коэффициента вариации

где - среднеквадратическое отклонение времен передачи сообщений i-го типа, получим соотношение:

В рассматриваемом нами конкретном случае анализа сети имеются всего два типа передаваемых блоков сообщений: исходящие интерактивные блоки, имеющие более высокий приоритет, и исходящие почтовые блоки, имеющие более низкий относительный приоритет.

Следовательно,

Для сообщений первого приоритета

Для сообщений второго приоритета

Следовательно, для интерактивных блоков:


Для почтовых блоков:


Для вычисления значений коэффициентов вариации длин блоков необходимо учесть следующее:

При каждом успешном опросе, ЦДП передает абоненту случайное число N исходящих блоков. Будем считать, что случайная величина N распределена по экспоненциальному закону.

Это означает, что коэффициент вариации (34)

Поскольку почтовые сообщения имеют постоянную длину, (35)

Расчет показывает, что при малой загрузке, время ожидания в очереди блоков почтовых сообщений незначительно превышает время ожидания блоков интерактивных сообщении (сообщений мало и они не мешают друг другу при передаче). С увеличением нагрузок ранним возрастает за счет того, что интерактивные блоки сообщений "выясняют" почтовые.

Время ожидания в очередях в узлах коммутации

Блоки сообщений, попадающие в центры коммутации, анализируются и направляются в соответствии с указанным в них адресом получателя через другие центры коммутации к абоненту или к ЭВМ. Прежде, чем центр коммутации (ЦК) прочтет адрес для направления блока, необходимо, чтобы вся управляющая часть блока (в у = 19 байт), содержащая адресную информацию, была полностью принята УК. Затрачиваемое на это время

Затем, спустя некоторое время реакции УК (рцк =1 мс), если очередь сообщений в УК отсутствует, рассматриваемый блок направится дальше к следующему центру коммутации.

Одновременно с приемом блоков УК ведет передачу выходящих из него блоков.

(37)

является полным временем, необходимым дня обслуживания передачи блока сообщений в УК.

Интерактивные и почтовые блоки сообщений поступают в УК вперемешку. При этом в него попадают как исходящие от ЭВМ ЦДП, так и предназначенные для нее блоки. Поэтому при рассмотрении времени ожидания очереди на передачу сообщения УК- необходимо учитывать полную загрузку сети

Учитывая, что является величиной постоянной (= 0), для определения значения времени tцк следует воспользоваться соотношением

Ввиду малой нагрузки эта величина получилась весьма незначительной, однако, при возрастании суммарной загрузки в 2 раза значение увеличивается, а при дальнейшем повышении нагрузки центры коммутации могут оказаться «узким местом» сети.

Значение эквивалентного времени ожидания в очередях центров коммутации определяется соотношением

аналогично тому, как это делалось при определении эквивалентной задержки в центре коммутации. Если принять, например, что для рассматриваемой сети каждый блок проходит один раз через 3,5 узла коммутации, то

Указанная задержка и должна учитываться при определении времени ответа для интерактивных и почтовых сообщений.

Система массового обслуживания называется системой с ожиданием, если заявка, заставшая все каналы занятыми, становится в очередь и ждет, пока не освободится какой-нибудь канал.

Если время ожидания заявки в очереди ничем не ограничено, то система называется «чистой системой с ожиданием». Если оно ограничено какими-то условиями, то система называется «системой смешанного типа». Это промежуточный случай между чистой системой с отказами и чистой системой с ожиданием.

Для практики наибольший интерес представляют именно системы смешанного типа.

Ограничения, наложенные на ожидание, могут быть различного типа. Часто бывает, что ограничение накладывается на время ожидания заявки в очереди; считается, что оно ограничено сверху каким-то сроком , который может быть как строго определенным, так и случайным. При этом ограничивается только срок ожидания в очереди, а начатое обслуживание доводится до конца, независимо от того, сколько времени продолжалось ожидание (например, клиент в парикмахерской, сев в кресло, обычно уже не уходит до конца обслуживания). В других задачах естественнее наложить ограничение не на время ожидания в очереди, а на общее время пребывания заявки в системе (например, воздушная цель может пробыть в зоне стрельбы лишь ограниченное время и покидает ее независимо от того, кончился обстрел или нет). Наконец, можно рассмотреть и такую смешанную систему (она ближе всего к типу торговых предприятий, торгующих предметами не первой необходимости), когда заявка становится в очередь только в том случае, если длина очереди не слишком велика. Здесь ограничение накладывается на число заявок в очереди.

В системах с ожиданием существенную роль играет так называемая «дисциплина очереди». Ожидающие заявки могут вызываться на обслуживание как в порядке очереди (раньше прибывший раньше и обслуживается), так и в случайном, неорганизованном порядке. Существуют системы массового обслуживания «с преимуществами», где некоторые заявки обслуживаются предпочтительно перед другими («генералы и полковники вне очереди»).

Каждый тип системы с ожиданием имеет свои особенности и свою математическую теорию. Многие из них описаны, например, в книге В. В. Гнеденко «Лекции по теории массового обслуживания».

Здесь мы остановимся только на простейшем случае смешанной системы, являющемся естественным обобщением задачи Эрланга для системы с отказами. Для этого случая мы выведем дифференциальные уравнения, аналогичные уравнениям Эрланга, и формулы для вероятностей состояний в установившемся режиме, аналогичные формулам Эрланга.

Рассмотрим смешанную систему массового обслуживания с каналами при следующих условиях. На вход системы поступает простейший поток заявок с плотностью . Время обслуживания одной заявки - показательное, с параметром . Заявка, заставшая все каналы занятыми, становится в очередь и ожидает обслуживания; время ожидания ограничено некоторым сроком ; если до истечения этого срока заявка не будет принята к обслуживанию, то она покидает очередь и остается необслуженной. Срок ожидания будем считать случайным и распределенным по показательному закону

где параметр - величина, обратная среднему сроку ожидания:

; .

Параметр полностью аналогичен параметрам и потока заявок и «потока освобождений». Его можно интерпретировать, как плотность «потока уходов» заявки, стоящей в очереди. Действительно, представим себе заявку, которая только и делает, что становится в очередь и ждет в ней, пока не кончится срок ожидания , после чего уходит и сразу же снова становится в очередь. Тогда «поток уходов» такой заявки из очереди будет иметь плотность .

Очевидно, при система смешанного типа превращается в чистую систему с отказами; при она превращается в чистую систему с ожиданием.

Заметим, что при показательном законе распределения срока ожидания пропускная способность системы не зависит от того, обслуживаются ли заявки в порядке очереди или в случайном порядке: для каждой заявки закон распределения оставшегося времени ожидания не зависит от того, сколько времени заявка уже стояла в очереди.

Благодаря допущению о пуассоновском характере всех потоков событий, приводящих к изменениям состояний системы, процесс, протекающий в ней, будет марковским. Напишем уравнения для вероятностей состояний системы. Для этого, прежде всего, перечислим эти состояния. Будем их нумеровать не по числу занятых каналов, а по числу связанных с системой заявок. Заявку будем называть «связанной с системой», если она либо находится в состоянии обслуживания, либо ожидает очереди. Возможные состояния системы будут:

Ни один канал не занят (очереди нет),

Занят ровно один канал (очереди нет),

Занято ровно каналов (очереди нет),

Заняты все каналов (очереди нет),

Заняты все каналов, одна заявка стоит в очереди,

Заняты все каналов, заявок стоят в очереди,

Число заявок , стоящих в очереди, в наших условиях может быть сколь угодно большим. Таким образом, система имеет бесконечное (хотя и счетное) множество состояний. Соответственно, число описывающих ее дифференциальных уравнений тоже будет бесконечным.

Очевидно, первые дифференциальных уравнений ничем не будут отличаться от соответствующих уравнений Эрланга:

Отличие новых уравнений от уравнений Эрланга начнется при . Действительно, в состояние система с отказами может перейти только из состояния ; что касается системы с ожиданием, то она может перейти в состояние не только из , но и из (все каналы заняты, одна заявка стоит в очереди).

Составим дифференциальное уравнение для . Зафиксируем момент и найдем - вероятность того, что система в момент будет в состоянии . Это может осуществиться тремя способами:

1) в момент система уже была в состоянии , а за время не вышла из него (не пришла ни одна заявка и ни один из каналов не освободился);

2) в момент система была в состоянии , а за время перешла в состояние (пришла одна заявка);

3) в момент система была в состоянии (все каналы заняты, одна заявка стоит в очереди), а за время перешла в (либо освободился один канал и стоящая в очереди заявка заняла его, либо стоящая в очереди заявка ушла в связи с окончанием срока).

Вычислим теперь при любом - вероятность того, что в момент все каналов будут заняты и ровно заявок будут стоять в очереди. Это событие снова может осуществиться тремя способами:

1) в момент система уже была в состоянии , а за время это состояние не изменилось (значит, ни одна заявка не пришла, ни один капал не освободился и ни одна из стоящих в очереди заявок не ушла);

2) в момент система была в состоянии , а за время перешла в состояние (т. е. пришла одна заявка);

3) в момент система была в состоянии , а за время перешла в состояние (для этого либо один из каналов должен освободиться, и тогда одна из стоящих в очереди заявок займет его, либо одна из стоящих в очереди заявок должна уйти в связи с окончанием срока).

Следовательно:

Таким образом, мы получили для вероятностей состояний систему бесконечного числа дифференциальных уравнений:

(19.10.1)

Уравнения (19.10.1) являются естественным обобщением уравнений Эрланга на случай системы смешанного типа с ограниченным временем ожидания. Параметры в этих уравнениях могут быть как постоянными, так и переменными. При интегрировании системы (19.10.1) нужно учитывать, что хотя теоретически число возможных состояний системы бесконечно, но на практике вероятности при возрастании становятся пренебрежимо малыми, и соответствующие уравнения могут быть отброшены.

Выведем формулы, аналогичные формулам Эрланга, для вероятностей состояний системы при установившемся режиме обслуживания (при ). Из уравнений (19.10.1), полагая все постоянными, а все производные - равными нулю, получим систему алгебраических уравнений:

(19.10.2)

К ним нужно присоединить условие:

Найдем решение системы (19.10.2).

Для этого применим тот же прием, которым мы пользовались в случае системы с отказами: разрешим первое уравнение относительно подставим во второе, и т. д. Для любого , как и в случае системы с отказами, получим:

Перейдем к уравнениям для . Тем же способом получим:

,

,

и вообще при любом

. (19.10.5)

В обе формулы (19.10.4) и (19.10.5) в качестве сомножителя входит вероятность . Определим ее из условия (19.10.3). Подставляя в него выражения (19.10.4) и (19.10.5) для и , получим:

,

. (19.10.6)

Преобразуем выражения (19.10.4), (19.10.5) и (19.10.6), вводя в них вместо плотностей и «приведенные» плотности:

(19.10.7)

Параметры и выражают соответственно среднее число заявок и среднее число уходов заявки, стоящей в очереди, приходящиеся на среднее время обслуживания одной заявки.

В новых обозначениях формулы (19.10.4), (19.10.5) и (19.10.6) примут вид:

; (19.10.9)

. (19.10.10)

Подставляя (19.10.10) в (19.10.8) и (19.10.9), получим окончательные выражения для вероятностей состояний системы:

; (19.10.11)

. (19.10.12)

Зная вероятности всех состояний системы, можно легко определить другие интересующие нас характеристики, в частности, вероятность того, что заявка покинет систему необслуженной. Определим ее из следующих соображений: при установившемся режиме вероятность того, что заявка покинет систему необслуженной, есть не что иное, как отношение среднего числа заявок, уходящих из очереди в единицу времени, к среднему числу заявок, поступающих в единицу времени. Найдем среднее число заявок уходящих из очереди в единицу времени. Для этого сначала вычислим математическое ожидание числа заявок, находящихся в очереди:

. (19.10.13)

Чтобы получить , нужно умножить на среднюю «плотность уходов» одной заявки и разделить на среднюю плотность заявок , т. е. умножить на коэффициент