Алюминий взаимодействие с простыми веществами. Особенности состава, свойств и характеристик алюминия

Название Алюминий происходит от лат. alumen - так еще за 500 лет до н. э. назывались алюминиевые квасцы, которые применялись как протрава при крашении тканей и для дубления кожи. Датский ученый X. К. Эрстед в 1825, действуя амальгамой калия на безводный АlСl 3 и затем отгоняя ртуть, получил относительно чистый Алюминий. Первый промышленного способ производства Алюминия предложил в 1854 французский химик А. Э. Сент-Клер Девиль: способ заключался в восстановлении двойного хлорида Алюминия и натрия Na 3 AlCl 6 металлическим натрием. Похожий по цвету на серебро, Алюминий на первых порах ценился очень дорого. С 1855 по 1890 годы было получено всего 200 т Алюминия. Современный способ получения Алюминия электролизом криолитоглиноземного расплава разработан в 1886 году одновременно и независимо друг от друга Ч. Холлом в США и П. Эру во Франции.

Распространение Алюминия в природе. По распространенности в природе Алюминий занимает 3-е место после кислорода и кремния и 1-е - среди металлов. Его содержание в земной коре составляет по массе 8,80% . В свободном виде Алюминий в силу своей химической активности не встречается. Известно несколько сотен минералов Алюминия, преимущественно алюмосиликатов. Промышленное значение имеют боксит, алунит и нефелин. Нефелиновые породы беднее бокситов глиноземом, но при их комплексном использовании получаются важные побочные продукты: сода, поташ, серная кислота. В СССР разработан метод комплексного использования нефелинов. Нефелиновые руды в СССР образуют, в отличие от бокситов, весьма крупные месторождения и создают практически неограниченные возможности для развития алюминиевой промышленности.

Физические свойства Алюминия. Алюминий сочетает весьма ценный комплекс свойств: малую плотность, высокие теплопроводность и электрическую проводимость, высокую пластичность и хорошую коррозионную стойкость. Он легко поддается ковке, штамповке, прокатке, волочению. Алюминий хорошо сваривается газовой, контактной и других видами сварки. Решетка Алюминия кубическая гранецентрированная с параметром а = 4,0413 Å. Свойства Алюминий, как и всех металлов, в значит, степени зависят от его чистоты. Свойства Алюминия особой чистоты (99,996%): плотность (при 20°С) 2698,9 кг/м 3 ; t пл 660,24°С; t кип около 2500°С; коэффициент термического расширения (от 20° до 100°С) 23,86·10 -6 ; теплопроводность (при 190°С) 343 вт/м·К , удельная теплоемкость (при 100°С) 931,98 дж/кг·К. ; электропроводность по отношению к меди (при 20 °С) 65,5%. Алюминий обладает невысокой прочностью (предел прочности 50-60 Мн/м 2), твердостью (170 Мн/м 2 по Бринеллю) и высокой пластичностью (до 50%). При холодной прокатке предел прочности Алюминия возрастает до 115 Мн/м 2 , твердость - до 270 Мн/м 2 , относительное удлинение снижается до 5% (1 Мн/м 2 ~ и 0,1 кгс/мм 2). Алюминий хорошо полируется, анодируется и обладает высокой отражательной способностью, близкой к серебру (он отражает до 90% падающей световой энергии). Обладая большим сродством к кислороду, Алюминий на воздухе покрывается тонкой, но очень прочной пленкой оксида Al 2 О 3 , защищающей металл от дальнейшего окисления и обусловливающей его высокие антикоррозионные свойства. Прочность оксидной пленки и защитное действие ее сильно убывают в присутствии примесей ртути, натрия, магния, меди и др. Алюминий стоек к действию атмосферной коррозии, морской и пресной воды, практически не взаимодействует с концентрированной или сильно разбавленной азотной кислотой, с органических кислотами, пищевыми продуктами.

Химические свойства Алюминия. Внешняя электронная оболочка атома Алюминия состоит из 3 электронов и имеет строение 3s 2 3р 1 . В обычных условиях Алюминий в соединениях 3-валентен, но при высоких температурах может быть одновалентным, образуя так называемых субсоединения. Субгалогениды Алюминия, AlF и АlСl, устойчивые лишь в газообразном состоянии, в вакууме или в инертной атмосфере, при понижении температуры распадаются (диспропорционируют) на чистый Аl и AlF 3 или АlСl 3 и поэтому могут быть использованы для получения сверхчистого Алюминия. При накаливании мелкоизмельченный или порошкообразный Алюминий энергично сгорает на воздухе. Сжиганием Алюминия в токе кислорода достигается температура выше 3000°С. Свойством Алюминия активно взаимодействовать с кислородом пользуются для восстановления металлов из их оксидов (Алюминотермия). При темно-красном калении фтор энергично взаимодействует с Алюминием, образуя AlF 3 . Хлор и жидкий бром реагируют с Алюминием при комнатной температуре, иод - при нагревании. При высокой температуре Алюминий соединяется с азотом, углеродом и серой, образуя соответственно нитрид AlN, карбид Al 4 C 3 и сульфид Al 2 S 3 . С водородом Алюминий не взаимодействует; гидрид Алюминия (AlН 3) X получен косвенным путем. Большой интерес представляют двойные гидриды Алюминия и элементов I и II групп периодической системы состава МеН n · n AlH 3 , так называемые алюмогидриды. Алюминий легко растворяется в щелочах, выделяя водород и образуя алюминаты. Большинство солей Алюминия хорошо растворимо в воде. Растворы солей Алюминия вследствие гидролиза показывают кислую реакцию.

Получение Алюминия. В промышленности Алюминий получают электролизом глинозема Аl 2 О 3 , растворенного в расплавленном криолите NasAlF 6 при температуре около 950° С. Используются электролизеры трех основных конструкций: 1) электролизеры с непрерывными самообжигающимися анодами и боковым подводом тока, 2) то же, но с верхним подводом тока и 3) электролизеры с обожженными анодами. Электролитная ванна представляет собой железный кожух, футерованный внутри тепло- и электро-изолирующим материалом - огнеупорным кирпичом, и выложенный угольными плитами и блоками. Рабочий объем заполняется расплавленным электролитом, состоящим из 6-8% глинозема и 94-92% криолита (обычно с добавкой AlF 3 и около 5-6% смеси фторидов калия и магния). Катодом служит подина ванны, анодом - погруженные в электролит угольные обожженные блоки или же набивные самообжигающиеся электроды. При прохождении тока на катоде выделяется расплавленный Алюминий, который накапливается на подине, а на аноде - кислород, образующий с угольным анодом CO и CO 2 . К глинозему, основному расходуемому материалу, предъявляются высокие требования по чистоте и размерам частиц. Присутствие в нем оксидов более электроположительных элементов, чем Алюминий, ведет к загрязнению Алюминия. При достаточном содержании глинозема ванна работает нормально при электрическом напряжении порядка 4-4,5 В. Ванны присоединяют к источнику постоянного тока последовательно (сериями из 150-160 ванн). Современные электролизеры работают при силе тока до 150 кА. Из ванн Алюминий извлекают обычно с помощью вакуум-ковша. Расплавленный Алюминий чистотой 99,7% разливают в формы. Алюминий высокой чистоты (99,9965%) получают электролитическим рафинированием первичного Алюминия с помощью так называемых трехслойного способа, снижающего содержание примесей Fe, Si и Сu. Исследования процесса электролитического рафинирования Алюминия с применением органических электролитов показали принципиальную возможность получения Алюминий чистотой 99,999% при относительно низком расходе энергии, но пока этот метод обладает низкой производительностью. Для глубокой очистки Алюминий применяют зонную плавку или дистилляцию его через субфторид.

При электролитическом производстве Алюминия возможны поражения электрическим током, высокой температурой и вредными газами. Для избежания несчастных случаев ванны надежно изолируют, рабочие пользуются сухими валенками, соответствующей спецодеждой. Здоровая атмосфера поддерживается эффективной вентиляцией. При постоянном вдыхании пыли металлического Алюминия и его оксида может возникнуть алюминоз легких. У рабочих, занятых в производстве Алюминия, часты катары верхних дыхательных путей (риниты, фарингиты, ларингиты). Предельно допустимая концентрация в воздухе пыли металлического Алюминий, его оксида и сплавов 2 мг/м 3 .

Применение Алюминия. Сочетание физических, механических и химических свойств Алюминия определяет его широкое применение практически во всех областях техники, особенно в виде его сплавов с других металлами. В электротехнике Алюминий успешно заменяет медь, особенно в производстве массивных проводников, например, в воздушных линиях, высоковольтных кабелях, шинах распределительных устройств, трансформаторах (электрическая проводимость Алюминия достигает 65,5% электрической проводимости меди, и он более чем в три раза легче меди; при поперечном сечении, обеспечивающем одну и ту же проводимость, масса проводов из Алюминий вдвое меньше медных). Сверхчистый Алюминий употребляют в производстве электрических конденсаторов и выпрямителей, действие которых основано на способности оксидной пленки Алюминия пропускать электрический ток только в одном направлении. Сверхчистый Алюминий, очищенный зонной плавкой, применяется для синтеза полупроводниковых соединений типа А III B V ,применяемых для производства полупроводниковых приборов. Чистый Алюминий используют в производстве разного рода зеркальных отражателей. Алюминий высокой чистоты применяют для предохранения металлических поверхностей от действия атмосферной коррозии (плакирование, алюминиевая краска). Обладая относительно низким сечением поглощения нейтронов, Алюминий применяется как конструкционный материал в ядерных реакторах.

В алюминиевых резервуарах большой емкости хранят и транспортируют жидкие газы (метан, кислород, водород и т. д.), азотную и уксусную кислоты, чистую воду, перекись водорода и пищевые масла. Алюминий широко применяют в оборудовании и аппаратах пищевой промышленности, для упаковки пищевых продуктов (в виде фольги), для производства разного рода бытовых изделий. Резко возросло потребление Алюминий для отделки зданий, архитектурных, транспортных и спортивных сооружений.

В металлургии Алюминий (помимо сплавов на его основе)- одна из самых распространенных легирующих добавок в сплавах на основе Сu, Mg, Ti, Ni, Zn и Fe. Применяют Алюминий также для раскисления стали перед заливкой ее в форму, а также в процессах получения некоторых металлов методом алюминотермии. На основе Алюминия методом порошковой металлургии создан САП (спеченный алюминиевый порошок), обладающий при температурах выше 300°С большой жаропрочностью.

Алюминий используют в производстве взрывчатых веществ (аммонал, алюмотол). Широко применяют различные соединения Алюминия.

Производство и потребление Алюминия непрерывно растет, значительно опережая по темпам роста производство стали, меди, свинца, цинка.

Геохимия Алюминия. Геохимические черты Алюминия определяются его большим сродством к кислороду (в минералах Алюминий входит в кислородные октаэдры и тетраэдры), постоянной валентностью (3), слабой растворимостью большинства природных соединений. В эндогенных процессах при застывании магмы и формировании изверженных пород Алюминий входит в кристаллическую решетку полевых шпатов, слюд и других минералов - алюмосиликатов. В биосфере Алюминий- слабый мигрант, его мало в организмах и гидросфере. Во влажном климате, где разлагающиеся остатки обильной растительности образуют много органических кислот, Алюминий мигрирует в почвах и водах в виде органоминеральных коллоидных соединений; Алюминий адсорбируется коллоидами и осаждается в нижней части почв. Связь Алюминия с кремнием частично нарушается и местами в тропиках образуются минералы - гидрооксиды Алюминия- бемит, диаспор, гидраргиллит. Большая же часть Алюминия входит в состав алюмосиликатов - каолинита, бейделлита и других глинистых минералов. Слабая подвижность определяет остаточное накопление Алюминия в коре выветривания влажных тропиков. В результате образуются элювиальные бокситы. В прошлые геологические эпохи бокситы накапливались также в озерах и прибрежной зоне морей тропических областей (например, осадочные бокситы Казахстана). В степях и пустынях, где живого вещества мало, а воды нейтральные и щелочные, Алюминий почти не мигрирует. Наиболее энергична миграция Алюминия в вулканических областях, где наблюдаются сильнокислые речные и подземные воды, богатые Алюминием. В местах смещения кислых вод с щелочными - морскими (в устьях рек и других), Алюминий осаждается с образованием бокситовых месторождений.

Алюминий в организме. Алюминий входит в состав тканей животных и растений; в органах млекопитающих животных обнаружено от 10 -3 до 10 -5 % Алюминия (на сырое вещество). Алюминий накапливается в печени, поджелудочной и щитовидной железах. В растительных продуктах содержание Алюминия колеблется от 4 мг на 1 кг сухого вещества (картофель) до 46 мг (желтая репа), в продуктах животного происхождения - от 4 мг (мед) до 72 мг на 1 кг сухого вещества (говядина). В суточном рационе человека содержание Алюминия достигает 35-40 мг. Известны организмы - концентраторы Алюминия, например, плауны (Lycopodiaceae), содержащие в золе до 5,3% Алюминия, моллюски (Helix и Lithorina), в золе которых 0,2-0,8% Алюминия. Образуя нерастворимые соединения с фосфатами, Алюминий нарушает питание растений (поглощение фосфатов корнями) и животных (всасывание фосфатов в кишечнике).

Химические свойства алюминия

1. Не взаимодействует с Н 2 .

2. Как активный металл реагирует почти со всеми неметаллами без нагревания, если снять оксидную пленку.

4Al + 3O 2 → 2Al 2 O 3

2Al + 3Cl 2 → 2AlCl 3

Al + P → AlP

3. Реагирует с Н 2 О:

Алюминий – активный металл с большим сродством к кислороду. На воздухе покрывается защитной пленкой оксида. Если пленку уничтожить, то алюминий активно взаимодействует с водой.

2Al + 6H 2 O = 2Al(OH) 3 + 3H 2 ­

4. С разбавленными кислотами:

2Al + 6HCl → 2AlCl 3 + 3H 2

2Al + 3H 2 SO 4 → Al 2 (SO 4) 3 + 3H 2

С концентрированными HNO 3 и H 2 SO 4 при обычных условиях не реагирует, а только при нагревании.

5. Со щелочами:

2Al + 2NaOH 2NaAlO 2 + 3H 2

С водными растворами щелочей алюминий образует комплексы:

2Al + 2NaOH + 10 H 2 O = 2Na + - + 3H 2

или Na,

Na 3 , Na 2 – гидроксоалюминаты. Продукт зависит от концентрации щелочи.

4Al + 3O 2 → 2Al 2 O 3

Al 2 O 3 (глинозем) встречается в природе в виде минерала корунда (по твердости близок к алмазу). Драгоценные камни рубин и сапфир – тоже Al 2 O 3 , окрашенный примесями железа, хрома

Оксид алюминия – амфотерен. При сплавлении его со щелочами получаются соли метаалюминиевой кислоты HAlO 2 . Например:

Также взаимодействует с кислотами

Белый студенистый осадок гидроксида алюминия растворяется как в кислотах

Al(OH) 3 + 3HCl = AlCl 3 + 3 H 2 O,

так и в избытке растворов щелочей, проявляет амфотерность

Al(OH) 3 + NaOH + 2H 2 O = Na

При сплавлении со щелочами гидроксид алюминия образует соли метаалюминиевой или ортоалюминиевой кислот

Аl(OH) 3 Al 2 O 3 + H 2 O

Соли алюминия сильно гидролизуются. Соли алюминия и слабых кислот превращаются в основные соли или подвергаются полному гидролизу:

AlCl 3 + HOH ↔ AlOHCl 2 + HCl

Al +3 + HOH ↔ AlOH +2 + H + pH>7 протекает по I ступени, но при нагревании может протекать и по II ступени.

AlOHCl 2 + HOH ↔ Al(OH) 2 Cl + HCl

AlOH +2 + HOH ↔ Al(OH) 2 + + H +

При кипячении может протекать и III ступень

Al(OH) 2 Cl + HOH ↔ Al(OH) 3 + HCl

Al(OH) 2 + + HOH ↔ Al(OH) 3 + H +

Соли алюминия хорошо растворимы.

AlCl 3 – хлорид алюминия является катализатором при переработке нефти и различных органических синтезах.

Al 2 (SO 4) 3 ×18H 2 O – сульфат алюминия применяется для очистки воды от коллоидных частиц, захватываемых Al(OH) 3 образовавшихся при гидролизе и снижении жесткости

Al 2 (SO 4) 3 + Ca(HCO 3) 2 = Al(OH) 3 + CO 2 + CaSO 4 ↓

В кожевенной промышленности служит протравой при крошении хлопчатобумажных тканей – KAl(SO 4) 2 ×12H 2 O –сульфат калия-алюминия (алюмокалиевые квасцы).

Основное применение алюминия – производство сплавов на его основе. Дюралюмин – сплав алюминия, меди, магния и марганца.

Силумин – алюминий и кремний.

Основное их достоинство – малая плотность, удовлетворительная стойкость против атмосферной коррозии. Из алюминиевых сплавов изготавливают корпуса искусственных спутников Земли и космических кораблей.

Используется алюминий как восстановитель при выплавке металлов (алюминотермия)

Cr 2 O 3 + 2 Al t = 2Cr + Al 2 O 3 .

Также применяют для термитной сварки металлических изделий (смесь алюминия и оксида железа Fe 3 O 4) называемая термитом дает температуру около 3000°С.

Химический элемент алюминий – лёгкий металл серебристого цвета. Алюминий - самый распространенный в земной коре металл. Физические и химические свойства алюминия позволили ему найти широкое применение в современной промышленности и повседневной жизни.

Химические свойства алюминия

Химическая формула алюминия Аl. Атомный номер 13. Алюминий относится к простым веществам, так как его молекула содержит атом только одного элемента. Внешний энергетический уровень атома алюминия содержит 3 электрона. Эти электроны легко отдаются атомом алюминия во время химических реакций. Поэтому алюминий имеет высокую химическую активность и способен вытеснять металлы из их оксидов. Но в обычных условиях он довольно устойчив к химическому взаимодействию, так как покрыт прочной оксидной плёнкой.

С кислородом алюминий взаимодействует только при высокой температуре. В результате реакции образуется оксид алюминия. С серой, фосфором, азотом, углеродом взаимодействие также происходит при высокой температуре. А вот с хлором и бромом алюминий вступает в реакцию при обычных условиях. С йодом реагирует при нагревании, но только если катализатором выступает вода. С водородом алюминий не взаимодействует.

С металлами алюминий способен образовывать соединения, которые называются алюминиды.

В реакцию с водой вступает алюминий, очищенный от оксидной плёнки. Гидроксид, который получается в результате этой реакции, является малорастворимым соединением.

Алюминий легко взаимодействует с разбавленными кислотами, образуя соли. Но с концентрированными кислотами реагирует только при нагревании, образуя соли и продукты восстановления кислоты.

Алюминий легко реагирует со щелочами.

Физические свойства алюминия

Алюминий - прочный металл, но в то же время и пластичный, легко подвергается механической обработке: штамповке, полировке, вытягиванию.

Алюминий самый легкий из металлов. Имеет очень высокую теплопроводность. По электропроводности алюминий практически не уступает меди, но при этом он намного легче и дешевле.

Применение алюминия

Впервые металл алюминий был получен датским физиком Гансом Христианом Эрстедом в 1825 г . И в те времена алюминий считали драгоценным металлом. Модницы любили носить украшения из него.

Но промышленный способ получения алюминия был создан значительно позже - в 1855 г. французским химиком Анри Этьенн Сент-Клер Девилем.

Алюминиевые сплавы применяются практически во всех машиностроительных отраслях. Современная авиационная, космическая и автомобильная промышленность, кораблестроение не могут обходиться без таких сплавов. Наиболее известные сплавы – дюралюминий, силумин, литейные сплавы. Пожалуй, самым востребованным из этих сплавов является дюралюминий.

При переработке алюминия горячей и холодной обработкой получают профили, проволоку, трубы, ленты, листы. Алюминиевые листы или лента широко используются в современном строительстве. Так, специальную алюминиевую ленту применяют для заклеивания торцов различных строительных панелей, чтобы обеспечить надежную защиту от попадания осадков и пыли внутрь панели.

Так как алюминий обладает высокой электропроводностью, его используют для изготовления электропроводов и электротехнических шин.

Алюминий не является драгоценным металлом. Но некоторые его соединения используются в ювелирной промышленности. Наверное, не все знают, что рубин и сапфир – это монокристаллы окиси алюминия, в которые добавлены красящие окислы. Красный цвет рубину придают ионы хрома, а голубой цвет сапфира – от содержания ионов железа и титана. Чистая кристаллическая окись алюминия называется корундом.

В промышленных условиях создают искусственные корунд, рубин и сапфир.

Используется алюминий и в медицине. Он входит в состав некоторых препаратов, которые оказывают адсорбирующее, обволакивающее и обезболивающее действие.

Трудно найти такую отрасль современной промышленности, в которой не использовались бы алюминий и его соединения.

Al — Алюминий

АЛЮМИНИЙ (лат. Aluminium; от "alumen" — квасцы), Al, химический элемент III группы периодической системы, атомный номер 13, атомная масса 26,98154.

Природный алюминий состоит из одного нуклида 27 Al. Конфигурация внешнего электронного слоя 3s 2 p 1 . Практически во всех соединениях степень окисления алюминия +3 (валентность III).

Радиус нейтрального атома алюминия 0,143 нм, радиус иона Al 3+ 0,057 нм. Энергии последовательной ионизации нейтрального атома алюминия равны, соответственно, 5,984, 18,828, 28,44 и 120 эВ. По шкале Полинга электроотрицательность алюминия 1,5.

Простое вещество алюминий — мягкий легкий серебристо-белый металл.

Свойства: алюминий — типичный металл, кристаллическая решетка кубическая гранецентрированная, параметр а = 0,40403 нм. Температура плавления чистого металла 660°C, температура кипения около 2450°C, плотность 2,6989 г/см 3 . Температурный коэффициент линейного расширения алюминия около 2,5·10 –5 К –1 . Стандартный электродный потенциал Al 3+ /Al — 1,663В.

Химически алюминий — довольно активный металл. На воздухе его поверхность мгновенно покрывается плотной пленкой оксида Al 2 О 3 , которая препятствует дальнейшему доступу кислорода (O) к металлу и приводит к прекращению реакции, что обусловливает высокие антикоррозионные свойства алюминия. Защитная поверхностная пленка на алюминии образуется также, если его поместить в концентрированную азотную кислоту.

С остальными кислотами алюминий активно реагирует:

6НСl + 2Al = 2AlCl 3 + 3H 2 ,

3Н 2 SO 4 + 2Al = Al 2 (SO 4) 3 + 3H 2 .

Алюминий реагирует с растворами щелочей. Сначала растворяется защитная оксидная пленка:

Al 2 О 3 + 2NaOH + 3H 2 O = 2Na.

Затем протекают реакции:

2Al + 6H 2 O = 2Al(OH) 3 + 3H 2 ,

NaOH + Al(OH) 3 = Na,

или суммарно:

2Al + 6H 2 O + 2NaOH = Na + 3Н 2 ,

и в результате образуются алюминаты: Na — алюминат натрия (Na) (тетрагидроксоалюминат натрия), К — алюминат калия (K) (терагидроксоалюминат калия) или др. Так как для атома алюминия в этих соединениях характерно координационное число 6, а не 4, то действительные формулы указанных тетрагидроксосоединений следующие:

Na и К.

При нагревании алюминий реагирует с галогенами :

2Al + 3Cl 2 = 2AlCl 3 ,

2Al + 3 Br 2 = 2AlBr 3 .

Интересно, что реакция между порошками алюминия и иода (I) начинается при комнатной температуре, если в исходную смесь добавить несколько капель воды, которая в данном случае играет роль катализатора:

2Al + 3I 2 = 2AlI 3 .

Сплавы алюминия находят широкое применение в быту, в строительстве и архитектуре, в автомобилестроении, в судостроении, авиационной и космической технике. В частности, из алюминиевого сплава был изготовлен первый искусственный спутник Земли. Сплав алюминия и

Представляет собой самый распространенный металл в земной коре. Он относится к группе легких металлов, имеет небольшую плотность и температуру плавления. При этом пластичность и электропроводность находятся на высоком уровне, что обеспечивает его . Итак, давайте узнаем, каковы удельная температура плавления алюминия и его сплавов (пр. в сравнении с и ), тепло- и электропроводность, плотность, другие свойства, а также в чем особенности структуры сплавов алюминия и химического их состава.

Для начала нашему рассмотрению подлежат структура и хим.состав алюминия. Предел прочности чистого алюминия крайне небольшой и составляет до 90 МПа. Если же к его составу добавить в небольшом соотношении марганец, или магний, прочность может возрасти до 700 МПа. К такому же результату приведет использование особой термической обработки.

Металл, обладающий наиболее высокой чистотой (99,99% алюминия), может применяться в специальных и лабораторных целях, в остальных же случаях с технической чистотой. Наиболее распространенными примесями в нем могут выступать кремний и железо, которые практически не растворяются в алюминии. В результате их добавки уменьшается пластичность и повышается прочность конечного металла.

Структура алюминия представлена элементарными ячейками, которые в свою очередь состоят из четырех атомов. Теоретически плотность данного металла составляет 2698 кг/м 3 .

Теперь поговорим о свойствах металла алюминия.

Данное видео расскажет о структуре алюминия:

Свойства и характеристики

Свойствами металла служат его высокие показатели тепло- и электропроводности, невосприимчивость к коррозии, высокая пластичность и устойчивость к низким температурам. При этом главное его свойство – это небольшая плотность (около 2,7 г/см 3 .).

Механические, технологические, а также физико-химические свойства этого металла имеют непосредственную зависимость от входящих в его состав примесей. К естественным его компонентам относится и .

Основные параметры

  • Плотность алюминия составляет 2,7*10 3 кг/м 3 ;
  • Удельный вес — 2,7 г /cм 3 ;
  • Температура плавления алюминия 659°C;
  • Температура кипения 2000°C;
  • Коэффициент линейного расширения составляет — 22,9 *10 6 (1/град).

Теперь рассмотрению подлежат теплопроводность и электропроводность алюминия.

Данное видео сравнивает температуры плавления алюминия и других наиболее часто используемых металлов:

Электропроводность

Важным показателем алюминия является его электропроводность, которая уступает по величине лишь золоту, серебру и . Высокий коэффициент электропроводности в сочетании с небольшой плотностью обеспечивает материалу высокую конкурентоспособность в кабельно-проводниковой области.

Помимо основных примесей на этот показатель также влияет , марганец и хром. Если алюминий предназначен для производства проводников тока, то суммарное количество примесей не должно превышать 0,01%.

  • Показатель электропроводности может варьироваться, в зависимости от состояния, в котором находится алюминий. Процесс длительного отжига увеличивает этот показатель, а нагартовка, напротив, уменьшает его.
  • Удельное сопротивление при температуре 20 0 С в зависимости от марки металла находится в пределах 0,0277-0,029 мкОм*м.

Теплопроводность

Коэффициент теплопроводности металла составляет около 0,50 кал/см*с*С и увеличивается со степенью его чистоты.

Это значение меньше, чем у и серебра, но больше, чем у остальных металлов. Благодаря ему, алюминий активно используется в производстве теплообменников и радиаторов.

Коррозионная стойкость

Сам металл является химически активным веществом, благодаря чему его используют в алюмотермии. При контакте с воздухом на нем образуется тончайшая пленка из окиси алюминия, которая имеет химическую инертность и высокую прочность. Ее главное назначение – это защищать металл от последующего процесса окисления, а также от воздействия коррозии.

  • Если алюминий обладает высокой чистотой, то эта пленка не имеет пор, полностью покрывает его поверхность и обеспечивает надежным сцеплением. В результате металл устойчив не только к воде и воздуху, но и к щелочам и неорганическим кислотам.
  • В тех местах, где находятся примеси, защитный слой пленки может быть поврежденным. Такие места становятся уязвимыми для коррозии. Поэтому на поверхности может наблюдаться коррозия точечного типа. Если марка содержит 99,7% алюминия и менее 0,25% железа, скорость коррозии составляет 1.1, при содержании алюминия на 99,0% этот показатель увеличивается до 31.
  • Содержащееся железо также уменьшает устойчивость металла к щелочам, но не меняет устойчивость к серной и азотной кислотам.

Взаимодействие с разными веществами

Когда алюминий обладает температурой 100 0 С, он способен взаимодействовать с хлором. Независимо от степени нагрева, алюминий растворяет водород, но при этом не ступает в реакцию с ним. Именно потому он является главным составляющим элементом газов, которые присутствуют в металле.

В целом алюминий устойчив в следующих средах:

  • Пресная и морская вода;
  • Соли магния, натрия и аммония;
  • Серная кислота;
  • Слабые растворы из хрома и фосфора;
  • Раствор аммиака;
  • Уксусная, яблочная и прочие кислоты.

Алюминий не устойчив:

  • Раствор из серной кислоты;
  • Соляная кислота;
  • Едкие щелочи и их раствор;
  • Щавелевая кислота.

Про токсичность и экологичность алюминия читайте ниже.

Электропроводность меди и алюминия, а также иные сравнения двух металлов представлены в таблице ниже.

Сравнение характеристик алюминия и меди

Токсичность

Хотя алюминий весьма распространен, но он не используется в метаболизме, ни у одного живого существа. Он обладает незначительным токсическим действием, но многие его неорганические соединения, которые растворяются в воде, способны длительное время пребывать в таком состоянии и негативно сказываться на живых организмах. Наиболее ядовитыми веществами выступают ацетаты, хлориды и нитраты.

Согласно нормативам, в воде хозяйственно-питьевого назначения может содержаться 0,2-0,5 мг на 1 л.

Еще больше полезной информации о свойствах алюминия содержит данное видео: