«Организация,планирование и управление строительным производством» И.Г.Галкин.

Рассмотрим линейное неоднородное дифференциальное уравнение первого порядка:
(1) .
Существует три способа решения этого уравнения:

  • метод вариации постоянной (Лагранжа).

Рассмотрим решение линейного дифференциального уравнения первого порядка методом Лагранжа.

Метод вариации постоянной (Лагранжа)

В методе вариации постоянной мы решаем уравнение в два этапа. На первом этапе мы упрощаем исходное уравнение и решаем однородное уравнение. На втором этапе мы заменим постоянную интегрирования, полученную на первой стадии решения, на функцию. После чего ищем общее решение исходного уравнения.

Рассмотрим уравнение:
(1)

Шаг 1 Решение однородного уравнения

Ищем решение однородного уравнения:

Это уравнение с разделяющимися переменными

Разделяем переменные - умножаем на dx , делим на y :

Интегрируем:

Интеграл по y - табличный :

Тогда

Потенцируем:

Заменим постоянную e C на C и уберем знак модуля, что сводится к умножению на постоянную ±1 , которую включим в C :

Шаг 2 Заменим постоянную C на функцию

Теперь заменим постоянную C на функцию от x :
C → u(x)
То есть, будем искать решение исходного уравнения (1) в виде:
(2)
Находим производную.

По правилу дифференцирования сложной функции:
.
По правилу дифференцирования произведения:

.
Подставляем в исходное уравнение (1) :
(1) ;

.
Два члена сокращаются:
;
.
Интегрируем:
.
Подставляем в (2) :
.
В результате получаем общее решение линейного дифференциального уравнения первого порядка:
.

Пример решения линейного дифференциального уравнения первого порядка методом Лагранжа

Решить уравнение

Решение

Решаем однородное уравнение:

Разделяем переменные:

Умножим на :

Интегрируем:

Интегралы табличные :

Потенцируем:

Заменим постоянную e C на C и убираем знаки модуля:

Отсюда:

Заменим постоянную C на функцию от x :
C → u(x)

Находим производную:
.
Подставляем в исходное уравнение:
;
;
Или:
;
.
Интегрируем:
;
Решение уравнения:
.

Метод вариации произвольных постоянных применяется для решения неоднородных дифференциальных уравнений. Данный урок предназначен для тех студентов, кто уже более или менее хорошо ориентируется в теме. Если вы только-только начинаете знакомиться с ДУ, т.е. являетесь чайником, то рекомендую начать с первого урока: Дифференциальные уравнения первого порядка. Примеры решений . А если уже-уже заканчиваете, пожалуйста, отбросьте возможное предвзятое мнение, что метод сложный. Потому что он простой.

В каких случаях применяется метод вариации произвольных постоянных?

1) Метод вариации произвольной постояннОЙ можно использовать при решении линейного неоднородного ДУ 1-го порядка . Коль скоро уравнение первого порядка, то и постоянная (константа) тоже одна.

2) Метод вариации произвольнЫХ постоянных используют для решения некоторых линейных неоднородных уравнений второго порядка . Здесь варьируются две постоянные (константы).

Логично предположить, что урок будет состоять из двух параграфов…. Вот написал это предложение, и минут 10 мучительно думал, какую бы еще умную хрень добавить для плавного перехода к практическим примерам. Но почему-то мыслей после праздников нет никаких, хотя вроде и не злоупотреблял ничем. Поэтому сразу примемся за первый параграф.

Метод вариации произвольной постоянной
для линейного неоднородного уравнения первого порядка

Перед рассмотрением метода вариации произвольной постоянной желательно быть знакомым со статьей Линейные дифференциальные уравнения первого порядка . На том уроке мы отрабатывали первый способ решения неоднородного ДУ 1-го порядка. Этот первый способ решения, напоминаю, называется метод замены или метод Бернулли (не путать с уравнением Бернулли !!!)

Сейчас мы рассмотрим второй способ решения – метод вариации произвольной постоянной. Я приведу всего три примера, причем возьму их из вышеупомянутого урока . Почему так мало? Потому что на самом деле решение вторым способом будет очень похоже на решение первым способом. Кроме того, по моим наблюдениям, метод вариации произвольных постоянных применяется реже метода замены.



Пример 1


(Диффур из Примера №2 урока Линейные неоднородные ДУ 1-го порядка )

Решение: Данное уравнение является линейным неоднородным и имеет знакомый вид:

На первом этапе необходимо решить более простое уравнение:
То есть, тупо обнуляем правую часть – вместо пишем ноль.
Уравнение я буду называть вспомогательным уравнением .

В данном примере нужно решить следующее вспомогательное уравнение:

Перед нами уравнение с разделяющимися переменными , решение которого (надеюсь) уже не представляет для вас сложностей:

Таким образом:
– общее решение вспомогательного уравнения .

На втором шаге заменим константу некоторой пока ещё неизвестной функцией , которая зависит от «икс»:

Отсюда и название метода – варьируем константу . Как вариант, константа может быть некоторой функцией , которую нам предстоит сейчас найти.

В исходном неоднородном уравнении проведём замену:


Подставим и в уравнение :

Контрольный момент – два слагаемых в левой части сокращаются . Если этого не происходит, следует искать ошибку выше.

В результате замены получено уравнение с разделяющимися переменными. Разделяем переменные и интегрируем.

Какая благодать, экспоненты тоже сокращаются:

К найденной функции приплюсовываем «нормальную» константу :

На заключительном этапе вспоминаем про нашу замену:

Функция только что найдена!

Таким образом, общее решение:

Ответ: общее решение:

Если вы распечатаете два способа решения, то легко заметите, что в обоих случаях мы находили одни и те же интегралы. Отличие лишь в алгоритме решения.

Теперь что-нибудь посложнее, второй пример я тоже прокомментирую:

Пример 2

Найти общее решение дифференциального уравнения
(Диффур из Примера №8 урока Линейные неоднородные ДУ 1-го порядка )

Решение: Приведем уравнение к виду :

Обнулим правую часть и решим вспомогательное уравнение:



Общее решение вспомогательного уравнения:

В неоднородном уравнении проведём замену:

По правилу дифференцирования произведения:

Подставим и в исходное неоднородное уравнение :

Два слагаемых в левой части сокращаются, значит, мы на верном пути:

Интегрируем по частям. Вкусная буква из формулы интегрирования по частям у нас уже задействована в решении, поэтому используем, например, буквы «а» и «бэ»:

Теперь вспоминаем проведённую замену:

Ответ: общее решение:

И один пример для самостоятельного решения:

Пример 3

Найти частное решение дифференциального уравнения, соответствующее заданному начальному условию.

,
(Диффур из Примера №4 урока Линейные неоднородные ДУ 1-го порядка )
Решение:
Данное ДУ является линейным неоднородным. Используем метод вариации произвольных постоянных. Решим вспомогательное уравнение:

Разделяем переменные и интегрируем:

Общее решение:
В неоднородном уравнении проведем замену:

Выполним подстановку:

Таким образом, общее решение:

Найдем частное решение, соответствующее заданному начальному условию:

Ответ: частное решение:

Решение в конце урока может служить примерным образцом для чистового оформления задания.

Метод вариации произвольных постоянных
для линейного неоднородного уравнения второго порядка
с постоянными коэффициентами

Часто приходилось слышать мнение, что метод вариации произвольных постоянных для уравнения второго порядка – штука не из легких. Но я предполагаю следующее: скорее всего, метод многим кажется трудным, поскольку встречается не так часто. А в действительности особых сложностей нет – ход решения чёткий, прозрачный, понятный. И красивый.

Для освоения метода желательно уметь решать неоднородные уравнения второго порядка способом подбора частного решения по виду правой части. Данный способ подробно рассмотрен в статье Неоднородные ДУ 2-го порядка . Вспоминаем, что линейное неоднородное уравнение второго порядка с постоянными коэффициентами имеет вид:

Метод подбора, который рассматривался на вышеупомянутом уроке, проходит лишь в ограниченном ряде случаев, когда в правой части находятся многочлены, экспоненты, синусы, косинусы. Но что делать, когда справа, например, дробь, логарифм, тангенс? В такой ситуации на помощь как раз и приходит метод вариации постоянных.

Пример 4

Найти общее решение дифференциального уравнения второго порядка

Решение: В правой части данного уравнения находится дробь, поэтому сразу можно сказать, что метод подбора частного решения не прокатывает. Используем метод вариации произвольных постоянных.

Ничто не предвещает грозы, начало решения совершенно обычное:

Найдем общее решение соответствующего однородного уравнения:

Составим и решим характеристическое уравнение:


– получены сопряженные комплексные корни, поэтому общее решение:

Обратите внимание на запись общего решения – если есть скобки, то их раскрываем.

Теперь проделываем практически тот же трюк, что и для уравнения первого порядка: варьируем константы , заменяя их неизвестными функциями . То есть, общее решение неоднородного уравнения будем искать в виде:

Где – пока ещё неизвестные функции.

Похоже на свалку бытовых отходов, но сейчас всё рассортируем.

В качестве неизвестных выступают производные функций . Наша цель – найти производные , причем найденные производные должны удовлетворять и первому и второму уравнению системы.

Откуда берутся «игреки»? Их приносит аист. Смотрим на полученное ранее общее решение и записываем:

Найдем производные:

С левыми частями разобрались. Что справа?

– это правая часть исходного уравнения, в данном случае:

Коэффициент – это коэффициент при второй производной:

На практике почти всегда , и наш пример не исключение.

Всё прояснилось, теперь можно составить систему:

Систему обычно решают по формулам Крамера , используя стандартный алгоритм. Единственное отличие состоит в том, что вместо чисел у нас функции.

Найдем главный определитель системы:

Если позабылось, как раскрывается определитель «два на два», обратитесь к уроку Как вычислить определитель? Ссылка ведёт на доску позора =)

Итак: , значит, система имеет единственное решение.

Находим производную:

Но это еще не всё, пока мы нашли только производную.
Сама функция восстанавливается интегрированием:

Разбираемся со второй функцией:


Здесь добавляем «нормальную» константу

На заключительном этапе решения вспоминаем, в каком виде мы искали общее решение неоднородного уравнения? В таком:

Нужные функции только что найдены!

Осталось выполнить подстановку и записать ответ:

Ответ: общее решение:

В принципе, в ответе можно было раскрыть скобки.

Полная проверка ответа выполняется по стандартной схеме, которая рассматривалась на уроке Неоднородные ДУ 2-го порядка . Но проверка будет непростой, поскольку предстоит находить достаточно тяжелые производные и проводить громоздкую подстановку. Это неприятная особенность, когда вы решаете подобные диффуры.

Пример 5

Решить дифференциальное уравнение методом вариации произвольных постоянных

Это пример для самостоятельного решения. На самом деле в правой части тоже дробь. Вспоминаем тригонометрическую формулу , её, к слову, нужно будет применить по ходу решения.

Метод вариации произвольных постоянных – наиболее универсальный метод. Им можно решить любое уравнение, которое решается методом подбора частного решения по виду правой части . Возникает вопрос, а почему бы и там не использовать метод вариации произвольных постоянных? Ответ очевиден: подбор частного решения, который рассматривался на уроке Неоднородные уравнения второго порядка , значительно ускоряет решение и сокращает запись – никакого трахча с определителями и интегралами.

Рассмотрим два примера с задачей Коши .

Пример 6

Найти частное решение дифференциального уравнения, соответствующее заданным начальным условиям

,

Решение: Опять дробь и экспонента в интересном месте.
Используем метод вариации произвольных постоянных.

Найдем общее решение соответствующего однородного уравнения:



– получены различные действительные корни, поэтому общее решение:

Общее решение неоднородного уравнения ищем в виде: , где – пока ещё неизвестные функции.

Составим систему:

В данном случае:
,
Находим производные:
,


Таким образом:

Систему решим по формулам Крамера:
, значит, система имеет единственное решение.

Восстанавливаем функцию интегрированием:

Здесь использован метод подведения функции под знак дифференциала .

Восстанавливаем вторую функцию интегрированием:

Такой интеграл решается методом замены переменной :

Из самой замены выражаем:

Таким образом:

Данный интеграл можно найти методом выделения полного квадрата , но в примерах с диффурами я предпочитаю раскладывать дробь методом неопределенных коэффициентов :

Обе функции найдены:

В результате, общее решение неоднородного уравнения:

Найдем частное решение, удовлетворяющее начальным условиям .

Технически поиск решения осуществляется стандартным способом, который рассматривался в статье Неоднородные дифференциальные уравнения второго порядка .

Держитесь, сейчас будем находить производную от найденного общего решения:

Вот такое вот безобразие. Упрощать его не обязательно, легче сразу составить систему уравнений. В соответствии с начальными условиями :

Подставим найденные значения констант в общее решение:

В ответе логарифмы можно немного запаковать.

Ответ: частное решение:

Как видите, трудности могут возникнуть в интегралах и производных, но никак не в самом алгоритме метода вариации произвольных постоянных. Это не я вас запугал, это всё сборник Кузнецова!

Для расслабления заключительный, более простой пример для самостоятельного решения:

Пример 7

Решить задачу Коши

,

Пример несложный, но творческий, когда составите систему, внимательно на неё посмотрите, прежде чем решать;-),




В результате общее решение:

Найдем частное решение, соответствующее начальным условиям .



Подставим найденные значения констант в общее решение:

Ответ: частное решение:

Для записи результатов расчета принимают одну из следующих форм (рис. 41)

Рис. 41. Изображение событий для расчета на графике:

а - секторный способ; б - метод дроби

1 - раннее свершение события i (раннее начало работы ij);

2 - номер события i;

3 - позднее свершение события i (позднее окончание работы hi;

4 - код предшествующего события, через которое проходит путь максимальной продолжительности к данному событию.

3. 6. 1. Секторный способ расчета сетевого графика

При этом способе сетевой график вычерчивают с кружками больших размеров.

Порядок расчета:

1) у исходного события в левом секторе ставят нуль;

2) при движении слева направо от исходного события к конечному для каждого следующего события в левом секторе записывают число, равное сумме значения раннего срока свершения предыдущего события и продолжительности работы.

Если в событие входит две или более работ, то рассчитывают значение каждой из них, но в левый сектор переносят только максимальное значение из всех полученных ;

3) в завершающем событии значение, записанное в левом секторе, определяющее длину критического пути, переносят в правый сектор;

4) ходом справа налево от завершающего события к исходному находим значение позднего окончания работы путем вычитания из значения поздних сроков свершения конечного события (правый сектор) продолжительности предшествующих им работ. Результат записываем в правый сектор. В отличие от расчета ранних сроков (левый сектор), если из события выходит две или более работ, принимают не максимальное, а минимальное значение;

5) общий резерв времени для любой работы определяют вычитанием из значения правого сектора конечного события данной работы (куда работа входит), суммы значений левого сектора начального события данной работы (откуда работа выходит) и ее продолжительности;

6) частный резерв для любой работы определяют вычитанием из значения левого сектора конечного события данной работы (куда входит работа), суммы значений левого сектора начального события (откуда работа выходит) и продолжительности данной работы;

7) критический путь проходит через события в которых значения в левом и правом секторах совпадают. Полный и частный резерв времени для работ критического пути равен нулю;

8) резерв времени события равен разности значений правого и левого секторов.

Рис. 42. Сетевой график с результатами расчета секторным методом

3. 6. 2. Расчет параметров сетевого графика методом дроби

Осуществляется точно так же, как и расчет параметров секторным способом, только результаты записи вместо левого сектора записываются в числитель, а вместо правого - в знаменатель. Таким образом, на графике около каждого события проставляется два значения:

1) числитель - раннее начало последующей работы, равное наибольшей из сумм ранних начал и продолжительностей предшествующих работ. Раннее начало исходных работ графика принимают равным нулю. Расчет ведут слева направо;

2) знаменатель - позднее окончание предшествующих работ, равное наименьшей из разностей поздних окончаний последующих работ и их продолжительностей. Расчет ведут справа налево.

Работы критического пути при методе дроби определяют по событиям, ранние и поздние сроки свершения которых (числа числителя и знаменателя) равны между собой.

Полный резерв времени - это знаменатель у конца стрелки минус числитель у начала стрелки минус продолжительность работы.

Свободный резерв времени - это числитель у конца стрелки минус числитель у начала стрелки минус продолжительность работы.

Значение резервов времени записывают в отдельной таблице или непосредственно на графике рядом с конечным событием соответствующей работы.

Рис. 43. Сетевой график с результатами расчета методом дроби

Преимущества методов расчета на графике по сравнению с табличным способом следующие:

1) для расчета на графике не обязательна строгая упорядоченность событий;

2) исключаются ошибки, возникшие при записи в таблицу исходных данных для расчета;

3) арифметические вычисления более просты, не требуют каждый раз пересмотра ряда цифр, их переноса в другую колонку, что сокращает трудоемкость и уменьшает вероятность ошибок при расчете;

4) расчет на графике производится быстрее, чем в таблице.

Недостатки графического расчета:

1) записываемые на графике параметры работ в ходе строительства часто меняются, и в результате исправлений график быстро приходит в негодность;

2) не представляется возможности накапливать результаты предыдущих расчетов и, таким образом, отразить или исследовать динамику строительства.

3. 6. 3. Расчет сетевого графика по потенциалам событии

Потенциал Пi события i - максимальное время от данного события i до завершающего события сетевого графика - определяется величиной наиболее продолжительного пути между этими событиями. Потенциал первого (исходного) события равен общей продолжительности строительства, ограниченной завершающим событием, а потенциал завершающего события равен нулю.

Сетевой график по методу потенциалов рассчитывается двумя проходами: прямым - слева направо от исходного события последовательно по всем путям графика до завершающего и обратным -справа налево от завершающего события до исходного.

При прямом расчете определяют ранние сроки свершения событий. Эта часть расчета выполняется аналогично графическому методу (по секторам или в виде дроби). Результаты расчета записывают в X -образный знак около события. В левый сектор записывается раннее время свершения события (величина раннего начала работ), в нижний номер предшествующего события, через которое к данному проходит максимальный путь.

При обратном расчете определяют потенциалы событий. Расчет выполняют так же, как и расчет ранних сроков свершения событий, но точкой отсчета является завершающее событие графика (а не исходное). Таким образом, получаем данные о максимальной продолжительности работ от данного события до завершающего и тем самым, отвечаем на вопрос, который чаще всего возникает при обсуждении хода строительства: сколько дней осталось до конца, сколько дней имеется в резерве.

Потенциал событий вычисляется по формуле

При обратном расчете в правый сектор записывается потенциал данного события, а в верхний - номер последующего события, через которое от данного проходит максимальный путь к завершающему.

При анализе хода работ по графику для определения потенциала начального или промежуточного события какой-либо работы достаточно к имеющемуся потенциалу конечного события работы прибавить оставшуюся продолжительность. Преобразования, происшедшие в ходе изменений той или иной работы, не влияют на продолжительность пути от конечного до завершающего события. В связи с этим оперативный пересчет графика вручную занимает мало времени.

В данном методе потенциалом события i (), называют длину наибольшего пути от события i до завершающего события.

При расчете сетевого графика методом потенциалов пространство около каждого события разбивается на четыре сектора.

В верхнем секторе события i указывают номер последующего события j , через которое проходит путь наибольшей длины от события i до завершающего события.

В нижнем секторе указывают номер предшествующего события h , через которое проходит путь наибольшей длины от исходного события до события i . В левом секторе события i записывают раннее начало работ, выходящих из события i , , в правом – потенциал этого события ().

Расчет параметров сетевого графика выполняют в следующем порядке.

1. Заполняют левый и нижний сектора всех событий (начиная с исходного и заканчивая завершающим событием). При этом выполняются действия, предусмотренные пунктом 1 четырехсекторного метода.

2. Заполняют правый и верхний сектора всех событий (начиная с завершающего и заканчивая исходным событием). Если из события i выходит одна работа i–j , то его потенциал равен сумме продолжительности работы i–j и потенциала события j :

Если из события i выходит более одной работы, то его потенциал приравнивают максимальной из сумм продолжительностей этих работ и потенциалов последующих событий:

В верхнем секторе события i указывают номер соответствующего последующего события j .

В правом секторе завершающего события n ставят ноль, , в верхнем секторе – прочерк.

3. Определяют критические работы. Критический путь на сетевом графике выделяют, ориентируясь на номера в верхних секторах событий (начиная с исходного) или в нижних секторах (начиная с завершающего события).

4. Определяют резервы времени некритических работ. Их записывают в виде дроби рядом с величиной продолжительности соответствующей работы (в числителе – общий резерв, в знаменателе – частный резерв времени).

Для определения общего резерва времени работы i–j из длины критического пути вычитают раннее начало и продолжительность работы i–j , а также потенциал события j :

Частный резерв времени работы i – j определяют по формуле:

Для работ, входящих в завершающее событие, резервы вре­мени определяются по формуле:

32. Временные оценки продолжительности выполнения работ и способы их определения.

Эффективность сетевых графиков в реализации проекта в значительной мере зависит от точности расчетов и адекватности проектных условий реальным. В свою очередь точность календарных графиков определяется достоверностью и точностью оценки времени выполнения отдельных работ.

В системе СПУ используют 2 подхода к оценке времени выполнения работ :

1) Для часто повторяющихся работ, имеющих твердую нормативную базу, для расчета продолжительности работ используют фактически статистические данные или действующую нормативную базу.

Такие сетевые графики называются детерминированными.

t i - j = Q/П = объем работ / продолжительность

t i - j = Т/N р = трудоемкость / количество рабочих, занятых в ее выполнении.

В практике календарного планирования для определения продолжительности выполнения работ обычно используют действующую систему нормативов (ЕНИР, ВНИР, МНИР).

2) Если при разработке сетевой модели отсутствуют указанные в пункте 1 данных, то используют вероятностный подход для определения продолжительности работ. Такие графики называются вероятностными или стохастическими.

В таких графиках продолжительность работ зависит от взаимосочетания множества факторов и для ее определения используют метод экспертных оценок.

Подготовка временных оценок в этом случае включает:

1) Формирование группы экспертов (3-5 чел).

2) Определение оптимистической оценки времени работы t i - j , т.е. минимальное время выполнения работы при наиболее благоприятных обстоятельств в ходе реализации проекта.

3) Определение пессимистической оценки времени выполнения работы t i - j , Т.е. максимально время выполнения работы при самом неблагоприятном стечении обстоятельств в ходе реализации проекта.

4) Определение реалистической оценки времени работы t i - j , т.е. наиболее вероятное, с точки зрения эксперта, время выполнения работы при каких-то усредненных наиболее вероятных условиях реализации проекта.

5) В зависимости от принятого закона распределения вероятности, устанавливается расчетное значение выполнения работы.

T р =(t min +4t нв +t max)/6

Потенциал П события i - максимальное время от данного события i до завершающего события сетевого графика - определяется величиной наиболее продолжительного пути между этими событиями

Расчет потенциалов события на графике ведут двумя Проходами:

ПРЯМЫМ - от исходного события последовательно по всем путям графика до завершающего и обратным - в противоположном направлении - от завершающего события до исходного. Эта часть расчета ничем не отличается от изложенной выше. При обратном расчете определяют потенциалы событий. Расчет выполняют так же, как и расчет ранних сроков свершения событий, но точкой отсчета является завершающее событие графика (а не исходное). Таким образом, мы получаем данные о максимальной продолжительности работ от данного события до завершающего и тем самым отвечаем на вопрос, который чаще всего возникает при обсуждении хода строительства: сколько дней осталось до конца, сколько дней имеется в резерве. При расчете обратным ходом потенциал завершающего события принимают равным нулю. Потенциалы событий вычисляют по формуле

Запись результатов при этом методе расчета ведут обычно по секторам (рис. 10.23), в которые заносят следующие данные: в левый сектор - величину ранних свершений события; в нижний - номер предшествующего события, через которое к данному проходит путь максимальной продолжительности; в правый сектор - потенциал события; в верхний - номер последующего события, через которое проходит путь наибольшей продолжительности от данного события к завершающему. Первые два сектора заполняют при прямом расчете, остальные - при обратном.

Условием критичности событий является равенство суммы раннего срока свершения события и потенциала событий (суммы левого и правого секторов) критическому сроку, т. е.

(5.18)

Резерв времени событий К имеет место только дпя некритических событий, и его величина равна разности между величиной критического срока и суммой раннего свершения события и его потенциала, т. е.



Рис. 5.23. Расчет сетевого графика с потенциалами событий

В процессе оперативного контроля за ходом строительства по СГ, рассчитанным по потенциалам, резервы времени определяют не в сравнении с критическим сроком, а в сопоставлении с фактическим временем, оставшимся до установленного срока по формуле

(5.1)

Отрицательное значение резерва показывает запаздывание против установленного срока.

ЛЕКЦИЯ №6.

ОБЩИЕ ПРИНЦИПЫ ПРОЕКТИРОВАНИЯ

СТРОГЕНПЛАНОВ. 2 часа.

6.1. НАЗНАЧЕНИЕ И ВИДЫ СТРОГЕНПЛАНОВ

Стройгенпланом (СГП) называют генеральный план площадки, на котором показана расстановка основных монтажных и грузоподъемных механизмов, временных зданий, сооружений и установок, возводимых и используемых в период строительства.

СГП предназначен для определения состава и размещения объектов строительного хозяйства в целях максимальной эффективности их использования и с учетом соблюдения требований охраны труда. СГП - важнейшая составная часть технической документации и основной документ, регламентирующий организацию площадки и объемы временного строительства.

Различают стройгенплан общеплощадочный и объектный.

Общеплощадочный СГП дает принципиальные решения по организации строительного хозяйства всей площадки в целом и выполняется проектной организацией на стадии проекта или РИ в составе проекта организации строительства (НОС).

Объектный СIТI детально решает организацию той части строительного хозяйства, которая непосредственно связана с сооружениями данного объекта и охватывает территорию, примыкающую к нему. Он составляется строительной организацией на одно или несколько зданий и сооружений на стадии рабочей документации в составе ПНР. Различия в методах проектирования между СГП в составе ПОС и [‘ПР сводятся, по существу, к степени детализации разработки плана и точности расчетов.

Общие принципы проектирования:

СГП является частью комплексной документации на строительство, и его решения должны быть увязаны с остальными разделами проекта, в том числе с принятой технологией работ и сроками строительства, установленными графиками; решения СГП должны отвечать требованиям строительных нормативов*. Временные здания, сооружения и установки (кроме мобильных) располагают на территориях, не предназначенных под застройку до конца строительства; решения СГП должны обеспечивать рациональное прохождение грузопотоков на площадке путем сокращения числа перегрузок и уменьшения расстояний перевозок.

Это требование прежде всего относится к массовым, а таюке особо тяжелым грузам. Целесообразность промежугочной разгрузки массовых материалов необходимо каждый раз подвергать тщательному анализу. Правильное размещение монтажных механизмов, установок для производства бетонов и растворов, складов, площадок укрупнительной сборки - основное условие решения этой задачи. СГП должен обеспечивать наиболее полное удовлетворение бытовых нужд работающих на строительстве. Это требование реализуется гiугем продуманного подбора и размещения бытовых помещений, устройств и пешеходных путей.

Принятые в СГП решения должны отвечать требованиям техники безопасности, пожарной безопасности и условиям охраны окружающей среды.

Затраты на временное строительство должны быть минимальными. Сокращение их достигается использованием постоянных объектов, уменьшением объема временных зданий, сооружений и устройств с использованием инвентарных решений.

В то же время следует отметить, что соображения экономии не должны преобладать над требованиями охраны труда, окружающей среды и созданием, в целом, благоустроенной производственной обстановки. Преобладающий до сих пор порядок оплаты временного хозяйства строительства за счет накладных расходов препятствует этому и противоречит мировой практике, где принят порядок прямой оплаты всех работ и элементов благоустройства стройплощадки в соответствии со СГП, составленным менеджером объекта или под его руководством.

6.2. ОБЩЕПЛОЩАДОЧНЫЙ СТРОЙГЕНПЛАН

Общеплощадочный СГП разрабатывается на строительство комплекса (промышленного, гражданского, сельскохозяйственного) или на отдельные сложные здания и сооружения. При одностадийном проектировании (рабочий проект), осуществляемом в основном при привязке отдельных несложных типовых зданий и сооружений, общеплощадочный СГП не выполняют.

Исходными данными для разработки общеплощадочного СГП служат: генплан площадки строительства; геологические, гидрогеологические и инженерно-экономические изыскания; смета; сводный календарный план; расчеты объемов временного строительства и другие материалы ПОС.

Материалы геологических и гидрогеологических изысканий используют при размещении объектов строительного хозяйства, когда необходимо знать несущую способность грунта и уровень грунтовых вод, например, при выборе места и конструкции траншейных складов цемента или других объектов, имеющих заглубленные помещения. Инженерно- экономические изыскания позволяют более рационально наметить транспортные связи строительства с карьерами, поставщиками и т. п.

На генплане показывают рельеф (горизонтали) и планировочные отметки существующих и проектируемых зданий и сооружений, насаждения, сети дорог и коммуникаций. Все эти сведения дают возможность в СГП правильно решить планировку территории строительства; отвод атмосферных вод; схему, отметки и конструкции временных дорог; установить необходимый объем и места присоединения временных сетей к источникам питания.

Общеплощадочный СГП согласовывается проектной организацией с заказчиком и генподрядчиком. Заказчик в свою очередь согласовывает его с отделом районного архитектора, органами санэпидемиологической службы, пожарного Надзора, отделами безопасности движения, эксплуатационными службами (энерго-, водо- и газоснабжения и т. д.), административной инспекцией и отделами подземных сооружений.

Общеплощадочный СГП состоит из графической части и расчетно-пояснительной записки.

Графическая часть проекта включает: генплан площадки с нанесенными на нем объектами временного хозяйства; экспликацию основных постоянных и всех временных зданий, сооружений и установок; условные обозначения, технико-экономические показатели, фрагменты общеплощадочного СГП (рис. 10.1, 10.2).

Так как графической основой СГП является генеральный план проектируемого объекта или комплекса, то масштаб изображения обычно сохраняют неизменным (1:1000; 1:2000; 1:5000).

для крупных и сложных объектов и комплексов разрабатывают несколько вариантов СГП, что позволяет выбрать наиболее экономичное решение.

Экспликация временных зданий и сооружений должна включать все временные здания и сооружения, сведения об объеме (площади, протяженности) каждого временного устройства, его габаритов в плане, конструктивной характеристики (тип, марка или краткое описание). Условные обозначения для СГП до сих пор полностью не систематизированы.

Расчетно-пояснительная записка содержит расчет потребности по укрупненным показателям и служит обоснованием принятых в СГП решений элементов строительного хозяйства - механизированных установок, временных зданий и сооружений. Ведомость на временные здания и сооружения помимо сведений, включенных в экспликацию, содержит дополнительные данные. В необходимых случаях составляют выборку ресурсов для временного строительства.

Технико-экономическими показателями СГП при сопоставлении вариантов могут служить следующие данные:

Удельные затраты на временные здания и сооружения - стоимость строительного хозяйства (%) по отношению к общей сметной стоимости. Этот показатель сравнивается со сметным лимитом на эти затраты (1,5... 12%) и с другими вариантами СГП;

Продолжительность работ по организации строительного хозяйства в подготовительный период;

Объем и стоимость затрат на временные здания и сооружения в целом и по отдельным видам строительства (дороги, здания, сети и т. д.) и работ (транспортные, складские и т. п.), отнесенных к стоимости СМР или к 1 га территории строительства;

Трудоемкость работ по организации временного хозяйства по тем же измерителям.

При оценке СГП используют также архитектурно-планировочные показатели, коэффициент застройки и коэффициент использования площади. Кроме того, СГП должен оцениваться с точки зрения ряда других факторов, не охваченных системой общепринятых показателей. Например, учитывают уровень санитарно-бытового обслуживания; соответствие принятой схемы движения удобствам работы транспорта с точки зрения уменьшения количества тупиков и пересечений и т. д.

Хорошо выполненный СГП в немалой степени способствует повышению производительности труда, сокращению сроков работ и снижению стоимости строительства.

Порядок проектирования:

1. на основе КП строительства определяют потребность в трудовых, энергетических и других материально-технических ресурсах по этапам;

2. на основе расчета потребности в ресурсах определяют виды и объемы временных зданий, установок и сооружений;

З. производят размещение (привязку) элементов временного строительного хозяйства: вначале привязывают монтажные механизмы, приобъектные склады и дороги. Тесная взаимосвязь этих элементов между собой и многовариантность возможного решения обусловливают необходимость размещать их на плане одновременно. После этого следует продумать дислокацию механизированных установок, обслуживающих строительство в целом, и разместить площадки укрупнительной сборки.

4. на генплане участка, выполненном на геоподоснове и содержащем существующие и проектируемые здания и сооружения, показывают границы строительной площадки. При строительстве в несколько очередей некоторые здания и сооружения, используемые в период строительства, выделяются особо.

6.3. ОБЪЕКТНЫЙ СТРОЙГЕНПЛАН

Объектный СГП проектируют отдельно на все строящиеся здания и сооружения, входящие в общеплощадочный СГП. для сложных сооружений объектный СГП может составляться на различные этапы (подготовительный, основной и др.) и виды работ (земляные, сооружение подземной или монтаж надземной части здания, кровельные работы и др.).

Исходными данными для разработки объектного СГП служат общеплощадочный СГП, выполненный на предыдущей стадии проектирования: КП и технологические карты из ПНР данного объекта; уточненные расчеты потребности в ресурсах, а также рабочие чертежи здания или сооружения. Объектный СГП составляется подрядчиком или по его поручению проектно-технологической организацией (типа Орггехстроя); в последнем случае он согласовывается с генподрядчиком и заинтересованными субподрядными организациями.

Графическая часть объектного СГП в составе ПНР обычно выполняется в масштабе 1:500, 1:200, 1:100 и 1:50 и содержит те же элементы, что и общеплощадочный СГП. добавляется перечень основного монтажного оборудования с указанием потребной энергетической мощности. Объектный СГП уточняет принципиальные решения, принятые в общеплощадочном СГП, и, как всякий рабочий чертеж, должен иметь детальные и исчерпывающие данные, необходимые для реализации в натуре (рис. 10.3 и 10.4).

Расчетно-пояснительная записка содержит уточненные расчеты потребности на основе натуральных объемов работ по рабочей документации и сметам; конкретные технические решения по выбору механизированных установок, временных зданий, сооружений, дорог, силовой и осветительной сети, водо- и теплоснабжения, телефонизации и т. д. При выборе тех или иных устройств учитываются возможности подрядной организации. Титульный список (ведомость) временных зданий и сооружений служит основанием для определения объемов работ, оплаты их заказчиком и контроля за расходованием трудовых и материальных ресурсов при организации строительного хозяйства.

Порядок проектирования. Вначале уточняются исходные данные и расчеты. Объемы ресурсов, необходимые для строительства объекта, определенные ранее в ПОС по укрупненным показателям, берут из ППР, где они пересчитаны по физическим объемам Рд или РП, и сметы. Так, количество рабочих принимают по КП строительства объекта, разработанному при составлении объектного СГП. По диаграмме движения рабочей силы в графике выделяют период «пик», на который ориентируются при определении полного объема строительства временных санитарно-бытовых зданий и сооружений. Из графиков комплектации выбирают сведения о необходимых запасах материалов, что служит основой уточнения площади складов. Исходя из наличного парка машин в строительной организации в случае необходимости корректируют рекомендации типовых технологических карт в части монтажных механизмов.

Ог территориальных эксплуатационных хозяйств или аналогичных служб действующих предприятий, снабжающих строительство электроэнергией, водой, теплом, газом, получают условия подсоединения: место врезки, способ учета, дополнительные требования. Так как решения СГП определяются прежде всего расположением монтажных и грузоподъемных механизмов, то в первую очередь производят их рабочую привязку с обозначением пути движения, габаритов, зон работы, ограждений путей и т. д. Техника привязки кранов и других элементов временного хозяйства подробно излагается в соответствующих разделах.

При проектировании объектного СГП недостаточно определить габариты складских площадок в зоне действия механизма, следует выполнить раскладку сборных конструкций по типам и маркам, точно показать место, отведенное под те или иные материалы, тару, оснастку и инвентарь. После размещения складов переходят к привязке временных строений. При наличии общеплощадочного СГП на объектном уточняют расположение временных зданий, сооружений и установок только на территории, непосредственно примыкающей к строящемуся объекту.

Следующим этапом проектирования является привязка временных коммуникаций, включающая определение мест подключения к постоянным сетям или другим источникам снабжения, трассировку с обозначением промежуточных устройств в рабочей зоне.

На объектном СГП конкретизируют требования техники безопасности с показом ограждений опасных зон работы механизмов и высоковольтных линий; переходы через железнодорожные пути; расстановку знаков, регулирующих движение транспорта, и др. Уточняют также другие элементы построечного хозяйства.

При проектировании СГП для этапа подготовительных работ уточняют расположение внеплощадочных и внутриплощадочных дорог и сетей; места складирования растительного грунта; размещение установок, предназначенных для инженерной подготовки территории строительства; складские площадки; временные здания и сооружения; ограждения и другие устройства.

СГП на период нулевого цикла содержит, кроме элементов для возведения надземной части здания, места складирования грунта, предназначенного для обратной засыпки под полы и в пазухи; землевозные временные дороги; ограждения и места сходов в котлован; обноску; существующие и перекладываемые коммуникации.

В СГП на периоды кровельных или отделочных работ особое внимание уделяется установке подъемников; размещению штукатурных и малярных станций; агрегатов для подогрева и подачи мастик; выделению мест для хранения огнеопасных материалов.

6.4 Расчет потребности в бытовых помещениях на строительной площадке.

Временными зданиями называют надземные подсобно-вспомогательные и другие объекты, необходимые для обслуживания производства строительно-монтажных работ. Временные здания сооружают только на период строительства. Стоимость временных зданий, наряду с временными дорогами, является одной из основных статей затрат на временное строительное хозяйство, и сокращение их является важной задачей при проектировании СГП.

Временные здания, - в отличие от постоянных, - имеют свои особенности, связанные с назначением, конструктивным решением, методами строительства, эксплуатации и порядком финансирования.

По назначению временные здания делят на производственные, складские, административные, санитарно-бытовые, жилые и общественные.

В той части, которая охвачена унификацией, следует соблюдать установленные обозначения*. Изображения всех временных сооружений следует показывать теми же условными знаками, что и существующие проектируемые, но выделять более интенсивно (жирной линией, штриховкой, тонированием и т. п.). Особенно четко надо показать основные временные здания, сооружения и установки (бытовки, дороги, растворные узлы и т. п.).

К производственным зданиям относят различные мастерские (ремонтно-механические, арматурные, опалубочные, сантехнические); механизированные установки (бетонорастворные, асфальтовые); объекты энергетического хозяйства (трансформаторные подстанции, котельные); объекты транспортного хозяйства (гаражи, депо, профилактории); к складским - склады отапливаемые и холодные, кладовые и навесы; к административным - конторы начальника участка, прораба, диспетчерские и др.; к санитарно-бытовым - гардеробные, помещения для сушки одежды, душевые, столовые и буфеты, здравпункт и др., к жилым и общественным зданиям - общежития, магазины, столовые, бани, клубы и др.

и предприятий коммунально-бытового и культурного обслуживания является решающим фактором, определяющим темпы и сроки строительства. Объемы жилищного строительства устанавливают на основе расчета количества работающих и других категорий жителей поселка.

Инвентарные здания по степени мобильности и конструктивному решению можно классифицировать на следующие типы: сборно-разборные, контейнерные и передвижные.

Здания сборно-разборного типа конструктивно могут быть решены как каркасно-панельные или панельные.

Панельные сборно-разборные здания имеют меньшие пролеты по сравнению с каркасными, и поэтому их применение для промышленных целей ограничено. В таких зданиях размещают в основном бытовые, административные помещения или небольшие склады. Здания выполняют обычно из деревянных щитов, причем наружные щиты каркасные с заполнением эффективным утеплителем. Основным элементом унифицированных типовых секций сборно-разборного типа является звено, состоящее из стеновых щитов, двух кровельных и двух щитов пола, соединенных между собой.

Контейнерные здания представляют собой объемно-пространственную конструкцию, состоящую из одного или нескольких объемных блоков-контейнеров. Конструктивно контейнеры могут быть каркасные, панельные и смешанного типа. Каркасные контейнеры состоят из несущего каркаса и ограждающих конструкций, выполненных в виде навесных панелей или обшивки с заполнением эффективным утеплителем. Панельные контейнеры состоят из шести соединенных между собой панелей. Контейнеры, предназначенные для последующей блокировки между собой, выполняют в определенном наборе (торцовые, рядовые и др.), обеспечивающем получение необходимых площадей. Объем и габариты контейнеров определяются условиями транспортирования и ограничиваются существующими автомобильными и железнодорожными габаритами. Ширину контейнеров принимают до З м, длину исходя из радиуса поворота городских дорог - до 12 м.

Здания передвижного типа состоят из кузова и ходовой части, жестко соединенных друг с другом (рис. 14.1, г). Здания этого типа в наибольшей мере отвечают требованию мобильности. Трудозатраты на ввод их в эксплуатацию после перебазировки минимальны. В то же время этот тип временных зданий является наиболее дорогим.

К кузову на шасси автомашины или железнодорожного вагона требования по габариту такие же, как и к другому транспортному средству. Конструкция кузова аналогична устройству контейнеров, но в отличие от них на облицовку стен чаще применяют металл. Автофургон применяют в качестве жилых, бытовых, административных, производственных и складских помещений на объектах с небольшой продолжительностью работ или в качестве промежуточного решения временных зданий в начальный период строительства.

Обязательным, требованием является наличие при въезде на площадку информационного щита с: наименование строящегося объекта, застройщика и подрядчика, номера телефона и фамилии лица, на которого оформлен ордер на производство работ, представителя Госархстройнадзора, сроки начала и окончания работ, схема объекта. На площадке при необходимости оборудуется пункт очистки ияи мойки колес автомашин.

Бытовые городки - современная и эффективная форма санитарно-бытового обслуживания непосредственно на объектах.

Понятие обслуживания включает не только наличие комфортабельных бытовых помещений, но и набор удобств и услуг.

Как показывает опыт, в эксплуатации бытовых городков значительный эффект приносят специализированные службы по перебазированию, эксплуатации и ремонту зданий, организации питания и другим сервисным услугам.

Такие городки выполняются в виде набора контейнерных одно- и двухэтажных зданий, размещаемых на тщательно подготовленных площадках, и обслуживаются специализированными подразделениями.

Порядок проектирования:

1. определяют необходимый объем временного строительства по годам с учетом назначения зданий;

2. выявляют возможность и целесообразность использования для нужд строительства существующих и опережающего возведения проектируемых зданий;

З. определяют номенклатуру и площади временных зданий и сооружений, подлежащих сооружению по годам строительства (по КП или КПСК).

При проектировании СГП в составе ПОС определяют размеры площадки для городка, схему размещения зданий и способы обеспечения их электроэнергией, водой и другими коммуникациями. При проектировании СГП в составе ПГГР уточняют набор зданий конкретно по типам и производят их привязку, а также уточняют способы подключения к коммуникациям.

Состав и размещение городков. Бытовые городки сооружаются до начала производства основных СМР на объектах. Площади санитарно-бытовых помещений принимают по этапам строительства с учетом динамики движения рабочей силы на каждом этапе. Комплекс помещений должен быть подобран для всех рабочих, занятых на стройплощадке, включая рабочих субподрядных и наладочных организаций.

Бытовые городки оборудуют в соответствии с ПОС и ПНР, санитарно-техническими и противопожарными правилами, действующими нормативами и утвержденной номенклатурой по санитарно-бытовому обслуживанию строителей. На строительном объекте с числом работающих в наиболее многочисленной смене менее 60 человек должны быть как минимум следующие санитарно-бытовые помещения и инвентарь:

гардеробные с умывальниками, душевыми и сушильными; помещение для обогрева, отдыха и приема пищи; прорабская, туалет, навес для отдыха и место для курения, устройства для мытья обуви, щит со средствами пожаротушения. На строительном объекте с числом работающих в наиболее многочисленной смене от 60 человек и более кроме помещений, перечисленных выше, устраиваются помещения для столовой и личной гигиены женщин.

Площадь территории производственно-бытовых городков на число работающих 60...1000 человек определяется с учетом максимальной численности рабочих в основной период строительства.

Бытовые городки должны располагаться на спланированной площадке с максимальным приближением к основным маршрутам передвижения работающих на объекте, а также в соответствии с ПОС в безопасной зоне от работы крана и иметь отвод поверхностных вод. Проходы к санитарно-бытовым помещениям не должны пролегать через опасные зоны (от строящегося здания и грузоподъемных механизмов). Для обеспечения безопасного прохода в бытовые помещения должны быть устроены пешеходные дорожки из щебня шириной не менее 0,6 м.

Бытовые городки, а также подходы к ним следует располагать вне опасных зон действия механизмов и транспорта. Бытовые помещения располагают на расстоянии не менее 50 м и с наветренной стороны господствующих ветров по отношению к установкам, выделяющим пыль, вредные газы и пары.

В соответствии с нормами медицинского обслуживания при количестве работающих 300... 800 человек организуют фельдшерский пункт, а при 800.. .2000 человек - врачебный пункт. Медпункты надо располагать в одном блоке с бытовыми помещениями, соблюдая при этом предельное расстояние до наиболее удаленных рабочих мест 600. ..800 м. Медпункт должен быть обеспечен подъездом.

Помещение для обогрева располагают в зоне работы бригады и рассчитывают на весь персонал максимальной смены, работающей на открытой площадке при температуре воздуха о°с и ниже. Минимальная площадь помещения 8 м2.

Уборные со смывом следует располагать около канализационных колодцев. При отсутствии смывной канализации используют передвижные уборные с герметическими емкостями. Уборные с выгребными ямами можно устраивать только с разрешения органов Госсаннадзора. Уборные вне зданий следует располагать на расстоянии не более 200 м от наиболее удаленного рабочего места.

В современной постановке генподрядчик своими силами выполняет лишь минимальный объем работ по поддержанию порядка и чистоты на площадке, привлекая к обустройству специализированные фирмы. За рубежом для этих целей повсеместно имеется обширная сеть специализированных фирм, предоставляющих в аренду все элементы строительного хозяйства, они же выполняют монтаж, обслуживание, а по окончании работ - демонтаж и вывозку. Фирмы узкоспециализированные по направлениям. К примеру, на строительстве небольшого микрорайона Филадельфии (США) задействованы фирмы,выполняющие услуги: по аренде трейлеров и контейнеров для офиса и бытовок; уборке помещений; устройству ограждений; установке информационных щитов и указателей; доставке и обслуживанию туалетов; установке стендов охлаждения и подогрева питьевой воды с доставкой сменных баллонов; монтажу временной телефонной сети; устройству временного хозяйственного водоснабжения; временному хозяйственному тепло- и энергоснабжению; вывозке строительного мусора в сменных большегрузных контейнерах; фотографическому обслуживанию; размножению документации и др. печатным услугам и пр. Развитая инфраструктура обслуживания освобождает руководителя от массы забот и дает возможность сосредоточиться на своих основных обязанностях.

6.5 ЭЛЕКТРОСНАБЖЕНИЕ СТРОИТЕЛЬНОЙПЛОЩАДКИ

С ростом уровня индустриализации и механизации работ в строительстве возрастает роль электроснабжения - одного из решающих факторов, обеспечивающих нормальный ход строительных работ.

В настоящее время на каждого рабочего, занятого в строительстве, приходится более 4 тыс, кВт-ч в год электроэнергии, потребляемой на производственные нужды. Все более сложным становится электротехническое хозяйство строительства.

Проектирование временного электроснабжения - одна из основных задач в организации строительной площадки.

Порядок проектирования временного электроснабжения строительства:

1. Производят расчет электрических нагрузок;

2. Определяют количество и мощность трансформаторных подстанций (или других источников снабжения);

3. Выявляют объекты 1-й категории, требующие резервного электропитания (водопонижение, электропрогрев и т. п.);

4. Располагают на СГП трансформаторные подстанции, силовые и осветительные сети, инвентарные электротехнические устройства;

5. Составляют схему электроснабжения.

Расчетную электрическую нагрузку можно определить четырьмя способами.

1. Расчет нагрузок по удельной электрической мощности основан на обобщении статистических данных о фактической электрической мощности, потребляемой строительными объектами на 1 млн. руб. годового объема СМР. Способ наиболее простой и используется для предварительных расчетов при большом объеме

При пользовании нормативом следует иметь в виду, что он разработан применительно к условиям строительства 1-го территориального пояса группы В (Московская обл. и др.). При расчетах для других районов страны следует применять поправочные коэффициенты: понижающие - для южных районов и повышающие - для северных и восточных.

Таким образом, расчетная мощность трансформатора Р, (кВА):

(6.1)

где р - удельная мощность, кВА1млн. руб., определяемая по нормативам; С - годовой объем СМР, млн. руб., определяемый по графику строительства; /с - коэффициент, учитывающий район строительства и принимаемый по расчетным нормативам.

II. Расчет нагрузок по удельному расходу электроэнергии

(кВтч) на укрупненный измеритель соответствующего вида работ (100 м3

разрабатываемого грунта, 1 м3 монтажа железобетонных конструкций)

или на единицу продукции, выпускаемой подсобным производством (1 м3

монтажа железобетонных конструкций, 1 м3 товарного раствора):

(6.2)

где р - удельный расход электроэнергии на единицу соответствующего вида работ или единицу продукции (принимают по справочникам); объем работ за год в натуральных измерителях; Т, - принятое годовое число часов в зависимости от намечаемой интенсивности работ, при ведении работ в одну или две смены принимают Т, = 2500.. .5 000 ч/год; соф - коэффициент мощности, зависящий от количества и загрузки силовых потребителей (определяют по справочным), средневзвешенное значение

в строительстве составляет 0, 65. ..0,75.

III. Расчет нагрузок по установленной мощности электроприемников и коэффициенту спроса без дифференциации по видам потребителей производят по формуле

(6.3)

где Р - суммарная установленная мощность потребителей электроэнергии, кВт; ‘с,. - коэффициент спроса, принимаемый по справочникам.

IУ. Расчет нагрузок по установленной мощности электроприемников и коэффициентам спроса с дифференциацией по видам потребителей - по формуле

(6.4)

где а - коэффициент, учитывающий потери в сети в зависимости от протяженности, сечения и т.п., принимаемый по справочникам (а’1,05...1,1О); ‘С’,., 1С2с, iСЗс - коэффициенты спроса, зависящие от числа потребителей и принимаемые по справочникам; Р,. - мощность силовых потребителей, кВт, принимаемая по каталогам и справочникам; Р, - мощность для технологических нужд, кВт, принимаемая по каталогам и справочникам; Р0 - мощность устройств освещения внутреннего, кВт; Р0, - мощность устройств освещения наружного, кВт.

Последний способ наиболее сложный и трудоемкий, но обеспечивает наиболее точный результат; применяют его в рабочем проектировании.

Рис. 6.1. График электрической нагрузки

Для сварочных машин и трансформаторов, а также для установок электропрогрева производят условный пересчет их мощности, даваемой в паспортах в кВА, в установленную мощность в кВт:

(6.5)

где - мощность сварочных машин, кВА.

Минимальная освещенность установлена Указаниями по проектированию освещения строительных площадок (СН 81-80).

В инвентарном виде изготовляют также подстанции глубокого ввода с трансформаторами 10О...1ООО кВА (рис. 15.3).

Временные электростанции в строительстве применяют при отсутствии или недостаточности источников и сетей снабжающих энергосистем, чаще всего в подготовительный период строительства и в период развертывания работ. Временные передвижные электростанции можно разделить на три группы: до 100 кВт - малой и средней мощности с двигателями внутреннего сгорания; до 1000 кВт - крупные с дизельным двигателем; свыше 1000 кВт - энергопоезда с газо- и паротурбинными установками.

Передвижные электростанции первой группы (до 100 кВт) представляют собой комплектную установку, состоящую из двигателя, системы охлаждения и генератора, установленного на общей раме. Исполнение таких электростанций может быть открытым или закрытым, на автоприцепе, в фургоне, на автоходу (рис. 15.3). При открытом исполнении электростанцию устанавливают в закрытом вентилируемом помещении или под навесом.

Крупные электростанции мощностью до 1000 кВт имеют значительно большую массу и размеры, что влияет на мобильность их перемещения. Принципы устройства те же, что у электростанций, указанных выше. Наиболее мощные отечественные электростанции этой группы монтируются в специальных железнодорожных вагонах.

Энергопоезда представляют собой комплектные паро- или газотурбинные электростанции мощностью до 5000 кВт, размещенные в специальных вагонах. Поезд состоит из вагонов-котельных, вагонов-градирен и турбогенераторного вагона. Вагоны-котельные размещаются во временном здании, остальные вагоны - под открытом небом.

Подготовка площадки для энергопоезда состоит в устройстве железнодорожного тупика, строительстве зданий для вагонов-котельных, склада топлива, водопровода и других работ. На это обычно уходит один- два месяца, после чего энергопоезд может быть введен в эксплуатацию в течение двух-трех недель. Поезда обслуживаются постоянным эксплуатационным составом численностью от 40 (В-1000) до 80 человек (Б-4000).