Расчет раннего начала работ в сетевом графике. Расчет параметров сетевых графиков

Статистические расчеты содержания влаги

контрольная работа

2. Уравнение тренда на основе линейной зависимости.

2.1. Основные элементы временного ряда.

Можно построить эконометрическую модель, используя два типа исходных данных:

Данные, характеризующие совокупность различных объектов в определённый момент времени.

Данные, характеризующие один объект за ряд последовательных моментов времени.

Модели, построенные по данным первого типа, называются пространственными. Модели, построенные на основе второго типа данных, называются временными рядами.

Временной ряд - это совокупность значений какого-либо показателя за несколько последовательных моментов или периодов времени. Каждый уровень временного ряда формируется под воздействием большого числа факторов, которые условно можно подразделить на три группы:

Факторы, формирующие тенденцию ряда.

Факторы, формирующие циклические колебания ряда.

Случайные факторы.

При различных сочетаниях в изучаемом явлении или процессе этих факторов зависимость уровней ряда от времени может принимать различные формы.

Во-первых, большинство временных рядов экономических показателей имеют тенденцию, характеризующую совокупное долговременное воздействие множества факторов на динамику изучаемого показателя. Очевидно, что эти факторы, взятые в отдельности, могут оказывать разнонаправленное воздействие на исследуемый показатель. Однако в совокупности они формируют его возрастающую или убывающую тенденцию. На рис. 1. показан временной ряд, содержащий возрастающую тенденцию.

Во-вторых, изучаемый показатель может быть подвержен циклическим колебаниям. Эти колебания могут носить сезонный характер, поскольку экономическая деятельность ряда отраслей экономики зависит от времени года. При наличии больших массивов данных за длительные промежутки времени можно выявить циклические колебания, связанные с общей динамикой конъюнктуры рынка, а также с фазой бизнес цикла, в которой находится экономика страны. На рис. 2. представлен временной ряд, содержащий только сезонную компоненту.

Некоторые временные ряды не содержат тенденции и циклической компоненты, а каждый следующий их уровень базируется как сумма среднего уровня ряда и некоторой случайной компоненты. Пример ряда, содержащего только случайную компоненту, приведён на рис. 3.

Очевидно, что реальные данные не следуют полностью из каких-либо описанных моделей. Чаще всего они содержат все три компоненты. Каждый их уровень формируется под воздействием тенденции, сезонных колебаний и случайной компоненты.

В большинстве случаев фактический уровень временного ряда можно представить как сумму или произведение трендовой, циклической и случайной компонент. Модель, в которой временной ряд представлен как сумма перечисленных компонент, называется аддитивной моделью. Модель, в которой временной ряд представлен как произведение перечисленных компонент, называется мультипликативной моделью.

2.2. Автокорреляция уровней временного ряда.

При наличии во временном ряде тенденции и циклических колебаний значения каждого последующего уровня ряда зависят от предыдущих. Корреляционную зависимость между последовательными уровнями временного ряда называют автокорреляцией. Количественно её можно измерить с помощью линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми во времени.

Одна из рабочих формул для расчёта коэффициента корреляции имеет вид:

r xy = (x j - x ) * (y j - y ) .

(x j -x) 2 * (y j -y) 2

В качестве переменной x мы рассмотрим ряд y 2 , y 3 , ... y t ; в качестве переменной y рассмотрим ряд y 1 , y 2 , ... y t -1 . Тогда данная формула примет вид:

r 1 = (y t - y 1 ) * (y t-1 - y 2 ) ; где y 1 = y t ; y 2 = y t-1 .

(y t -y 1) 2 * (y t-1 -y 2) 2 n - 1 n - 1

Эту величину называют коэффициентом автокорреляции уровней ряда первого порядка. Число периодов, по которым рассчитывается коэффициент автокорреляции, называют лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается.

Свойства коэффициента автокорреляции:

Во-первых, он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Поэтому по коэффициенту автокорреляции можно судить о наличии линейной тенденции.

Во-вторых, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда.

Последовательность коэффициентов автокорреляции уровней первого, второго, и т.д. порядков называют автокорреляционной функцией временного ряда. График зависимости её значений от величины лага называется коррелограммой. Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а, следовательно, и лаг, при котором связь между текущим и предыдущим уровнями ряда наиболее тесная, т.е. при помощи анализа автокорреляционной функции и коррелограммы можно выявить структуру ряда.

Если наиболее высоким оказался коэффициент автокорреляции первого порядка, исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка t, ряд содержит циклические колебания с периодичностью в t моментов времени. Если ни один из коэффициентов автокорреляции не является значимым, можно сделать вывод: либо ряд не содержит тенденции и циклических колебаний, либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ.

2.3. Моделирование тенденции временного ряда.

Одним из наиболее распространённых способов моделирования тенденции временного ряда является построение аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда. Этот способ называют аналитическим выравниванием временного ряда.

Т.к. зависимость от времени может принимать разные формы, для её формализации можно использовать различные виды функции. Для построения трендов чаще всего применяются следующие функции:

Линейный тренд: y t = a + b*t ;

Гипербола:y t = a + b/t ;

Экспоненциальный тренд: y t = e a + b * t ;

Тренд в форме степенной функции: y t = a*t ;

Парабола: y t = a + b 1 *t + b 2 *t 2 + ... + b k *t k ;

Параметры каждого из этих трендов можно определить методом наименьших квадратов, используя в качестве независимой переменной время t = 1, 2, ... ,n , а в качестве зависимой переменной - фактические уровни временного ряда y t . Для нелинейных трендов предварительно проводят стандартную процедуру их линеаризации.

Существует несколько способов определения типа тенденции. К числу наиболее распространённых способов относятся качественный анализ изучаемого процесса, построение и визуальный анализ графика зависимости уровней ряда от времени, расчёт некоторых основных показателей динамики. В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путем сравнения коэффициентов автокорреляция первого порядка, рассчитанных по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни y t и y t -1 тесно коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит не6линейную тенденцию, например, в форме экспоненты, то коэффициент автокорреляции первого порядка по логарифмам уровней исходного ряда будет выше, чем соответствующий коэффициент, рассчитанный по уровням ряда. Чем сильнее выражена нелинейная тенденция в изучаемом временном ряде, тем в большей степени будут различаться значения указанных коэффициентов.

Выбор наилучшего уравнения в случае, если ряд содержит нелинейную тенденцию, можно осуществить путем перебора основных форм тренда, расчета по каждому уравнению скорректированного коэффициента детерминации R и выбора уравнения тренда с максимальным значением скорректированного коэффициента детерминации.

Высокие значения коэффициентов автокорреляции первого, второго и третьего порядков свидетельствуют о том, что ряд содержит тенденцию. Приблизительно равные значения коэффициентов автокорреляции по уровням этого ряда и по логарифмам уровней позволяют сделать следующий вывод: если ряд содержит нелинейную тенденцию, то она выражена в неявной форме. Поэтому для моделирования его тенденции в равной мере целесообразно использовать и линейную, и нелинейную функции, например степенной или экспоненциальный тренд. Для выявления наилучшего уравнения тренда необходимо определить параметры основных видов трендов.

Наиболее простую экономическую интерпретацию имеют параметры линейного и экспоненциального трендов. Параметры линейного тренда:

a - начальный уровень временного ряда в момент времени t = 0;

b - средний за период абсолютный прирост уровней ряда.

Расчётные по линейному тренду значения уровней временного ряда определяются двумя способами. Во-первых, можно последовательно подставлять в найденное уравнение тренда значения t = 1, 2, ..., n. Во-вторых, в соответствии с интерпретацией параметров линейного тренда каждый последующий уровень ряда есть сумма предыдущего уровня и среднего цепного абсолютного прироста.

Задача №1

Десять человек различного возраста имеют следующие параметры:

1. Определить результативный признак.

Рассчитаем зависимость роста от возраста:

Фактор (X): возраст.

Результативный признак (Y): рост.

a*x + b*x 2 = x*y

10*a + 248*b = 1812

248*a + 6492*b = 45023

a = 1812 - 248*b => 1812 - 248*b *248 + 6492*b = 45023

r = x*y - ( x* y)/n = 45023 - (248*1812)/10 =>

(x 2 - (x) 2 /n)*(y 2 - (y) 2 /n) (6492 - 248 2 /10)*(328444 - 1812 2 /10)

r = 0.44 - прямая умеренная связь

r 2 = 0.19 - рост на 19% зависит от возраста

Тест Фишера:

F cp = r 2 * (n - 2)

F cp = 0.19 * (10 - 2) = 1.78

F табл = 5.32

F cp < F табл =>

Рассчитаем зависимость веса от возраста:

Фактор (X): возраст.

Определим параметры линейной функции с помощью системы уравнений:

a*x + b*x 2 = x*y

10*a + 248*b = 753

248*a + 6492*b = 18856

a = 753 - 248*b => 1812 - 248*b *248 + 6492*b = 18856

r = x*y - ( x* y)/n = 18856 - (248*753)/10 =>

(x 2 - (x) 2 /n)*(y 2 - (y) 2 /n) (6492 - 248 2 /10)*(56967 - 753 2 /10)

r = 0.6 - заметная прямая связь

r 2 = 0.36 - вес на 36% зависит от возраста

Тест Фишера:

F cp = r 2 * (n - 2)

F cp = 0.36 * (10 - 2) = 4.5

F табл = 5.32

F cp < F табл => нулевая гипотеза подтвердилась, уравнение статистически незначимо.

Рассчитаем зависимость веса от роста:

Фактор (X): рост.

Результативный признак (Y): вес.

Определим параметры линейной функции с помощью системы уравнений:

a*x + b*x 2 = x*y

10*a + 1812*b = 753

1812*a + 328444*b = 136562

a = 753 - 1812*b => 753 - 1812*b *1812 + 328444*b = 136562

r = x*y - ( x* y)/n = 136562 - (1812*753)/10 =>

(x 2 - (x) 2 /n)*(y 2 - (y) 2 /n) (328444 - 1812 2 /10)*(56967 - 753 2 /10)

r = 0.69 - заметная прямая связь

r 2 = 0.47 - вес на 47% зависит от роста

x = 1812/10 = 181.2

Тест Фишера:

F cp = r 2 * (n - 2)

F cp = 0.47 * (10 - 2) = 7.1

F табл = 5.32

F cp > F табл => нулевая гипотеза не подтвердилась, уравнение имеет экономический смысл.

Тест Стьюдента:

Рассчитаем случайные ошибки:

.

m a = (y - y x ) 2 * x 2 .

n - 2 n*(x -x) 2

m b = (y - y x ) 2 / (n - 2)

m r = 1 - r 2

m a = 138.19 * 328444 = 72

m b = 138.19 / (10 - 2) = 1

m r = 1 - 0.47 = 0.26

t a = a/m a = 120/72 = 1.67

t b = b/m b = 1.08/1 = 1.08

t r = r/m r = 0.69/0.26 = 2.65

t табл = 2.3

Для расчёта доверительного интервала рассчитаем предельную ошибку:

a = t табл - t a = 2.3 - 1.67 = 0.63

b = t табл - t b = 2.3 - 1.08 = 1.22

r = t табл - t r = 2.3 - 2.65 = -0.35

Рассчитаем доверительные интервалы:

a = a a = -121.03 119.77

b = b b = -0.14 2.3

r = r r = 0.34 1.04

Задача №2

При контрольной выборочной проверке процента влажности почвы фермерских хозяйств региона получены следующие данные:

1. С вероятностью 0.95 и 0.99 установить предел, в котором находится средний процент содержания влаги.

2. Сделать выводы.

Генеральная средняя: x = x = 31.1 = 3.8875

Генеральная дисперсия: 2 = (x - x ) 2 = 1.8875 = 0.1261

n 8 .

Средняя квадратическая стандартная ошибка: x = 2 = 0.1261 = 0.126

Предельная ошибка выборки: x = t* x

Из таблицы значений t-критерия Стьюдента:

Для вероятности 0.95, предельная ошибка выборки:

x = 2.4469*0.126 = 0.308

Для вероятности 0.99, предельная ошибка выборки:

x = 3.7074*0.126 = 0.467

Доверительные интервалы:

Предел среднего процента содержания влаги с вероятностью 0.95:

Верхний центральный показатель некоторой линейной системы

Пусть дана система (2) и - ее решение. Рассмотрим семейство функций, Определение 5 : Функция R (t) называется верхней для системы (2), если она ограничена, измерима и осуществляет оценку, Где - норма матрицы Коши линейной системы...

Дифференциальное исчисление

Исходя из определения производной сформулируем следующее правило нахождения производной функции в точке: Чтобы вычислить производную функции f(x) в точке x0 нужно: 1) Найти f(x) - f(x0); 2) составить разностное отношение; 3) вычислить предел...

Дифференциальное исчисление

Исходя из определения производной...

Инвариантные подгруппы бипримарных групп

В заметке (1) исправлена ошибка, допущенная Бернсайдом в работе (2). А именно в (3) доказано, что группа порядка, где и - различные простые числа и, либо обладает характеристической -подгруппой порядка...

Использование современной компьютерной техники и программного обеспечения для решения прикладной задачи из инженерно-буровой практики

Зная значения коэффициентов а0, а1 и а2 можно найти значений y` по формуле, в нашем случае. Различие между экспериментальными и теоретическими данными невелико. Полученные данные позволяет нам найти зависимость, 5...

Линейная сложность циклотомических последовательностей

Пусть последовательность четвертого порядка, то есть, тогда, согласно лемме 1.1, она формируется по правилу: (2.1) Заметим, что правило (2.1) задает последовательность только тогда, когда...

Математическая модель цифрового устройства игры "Крестики-нолики" с человеком

Игровое поле игры в крестики-нолики может быть представлено в виде сетки, состоящей из строк и столбцов. Каждый элемент сетки может находиться в трех состояниях: пустое (начальное), отмечено крестиком, отмечено ноликом...

Методы отсечения

Среди совокупности п неделимых предметов, каждый i-и (i=1,2,…, п) из которых обладает по i-й характеристике показателем и полезностью найти такой набор, который позволяет максимизировать эффективность использования ресурсов величины...

Приближенное решение алгебраических и трансцендентных уравнений. Метод Ньютона

Информация о предыдущих приближениях корня используется для нахождения последующих приближений не только в методе касательных. В качестве примера другого такого метода мы приведём метод...

Статистические расчеты содержания влаги

Практические задачи: 1. Десять человек различного возраста имеют следующие параметры: Возраст, лет 18 20 21 22 22 24 25 26 31 39 Рост, см 174 183 182 180 178 179 185 185 184 182 Вес, кг 65 73 69 74 77 75 78 84 79 79 1...

Приняв в качестве гипотетической функции теоретических уровней прямую , определим параметры последней:

Решение этой системы можно осуществить по формулам:

Отсюда искомое уравнение тренда: . Подставляя в полученное уравнении значения 1, 2, 3, 4, 5, определяем теоретические уровни ряда (см. предпоследнюю графу табл. 4.3). Сравнивая значения эмпирических и теоретических уровней, видим, что они близки, т.е. можно сказать, что найденное уравнение весьма удачно характеризует основную тенденцию изменения уровней именно как линейную функцию.

Система нормальных уравнений упрощается, если отсчет времени ведется от середины ряда. Например, при нечетном числе уровней серединная точка (год, месяц) принимается за нуль. Тогда предшествующие периоды обозначаются соответственно -1, -2, -3 и т.д., а следующие за средним – соответственно +1, +2, +3 и т.д. При четном числе уровней два срединных момента (периода) времени обозначают −1 и +1, а все последующие и предыдущие, соответственно, через два интервала: и т.д.

При таком порядке отсчета времени (от середины ряда) , система нормальных уравнений упрощается до следующих двух уравнений, каждое из которых решается самостоятельно:

Важное значение при построении модели временного ряда имеет учет сезонных и циклических колебаний. Простейшим подходом, позволяющим учесть в модели сезонные и циклические колебания, является расчет значений сезонной/циклической компоненты и построение аддитивной и мультипликативной модели временного ряда.

Общий вид аддитивной модели следующий: Y=T+S+E . Эта модель предполагает, что каждый уровень временного уровня ряда может быть представлен как сумма трендовой T , сезонной S и случайной компонент. Общий вид мультипликативной модели выглядит как: Y=T∙S∙E .

Выбор одной из двух моделей проводится на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение аддитивной и мультипликативной моделей сводится к расчету T, S, E для каждого уровня ряда. Этапы построения модели включают в себя следующие шаги:



1. Выравнивание исходного ряда методом скользящей средней

2. Расчет значений сезонной компоненты S .

3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных в аддитивной (T+E) или мультипликативной (T∙E) модели.

4. Аналитическое выравнивание уровней (T+E) или (T∙E) и расчет значений T с использованием полученного уравнения тренда.

5. Расчет полученных по модели значений (T+E) или (T∙E) .

6. Расчет абсолютных и/или относительных ошибок. Если полученные значения не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок E для анализа взаимосвязи исходного ряда и других временных рядов.

Рассмотрим другие методы анализа взаимосвязи, предположив что изучаемые временные ряды не содержат периодических колебаний. Допустим, что изучается зависимость между рядами х и у . Для количественной характеристики этой зависимости используется линейный коэффициент корреляции. Если рассматриваемые временные ряды имеют тенденцию, коэффициент корреляции по абсолютной величине будет высоким. Однако это не говорит о том, что х причина у . Высокий коэффициент корреляции в данном случае – это результат того, что х и у зависят от времени, или содержат тенденцию. При этом одинаковую или противоположную тенденцию могут иметь ряды, совершенно не связанные друг с другом причинно-следственной зависимостью. Например, коэффициент корреляции между численностью выпускников вузов и числом домов отдыха в РФ в период с 1970-1990 г. составил 0,8. Однако, это не говорит о том, что количество домов отдыха способствует росту числа выпускников или наоборот.

Для того чтобы получить коэффициенты корреляции, характеризующие причинно-следственную связь между изучаемыми рядами, следует избавиться от так называемой ложной корреляции, вызванной наличием тенденции в каждом ряду, которую устраняют одним из методов.

Предположим, что по двум временным рядам х t и у t строится уравнение парной регрессии линейной регрессии вида: . наличие тенденции в каждом из этих временных рядов означает, что на зависимую у t и независимую х t переменные модели оказывает воздействие фактор времени, который непосредственно в модели не учтен. Влияние фактора времени будет выражено в корреляционной зависимости между значениями остатков за текущий и предыдущие моменты времени, которая получила название автокорреляции в остатках.

Автокорреляция в остатках – это нарушение одной из основных предпосылок МНК – предпосылки о случайности остатков, полученных по уравнению регрессии. Один из возможных путей решения этой проблемы состоит в применении обобщенного МНК.

Для устранения тенденции используются две группы методов:

Методы, основанные на преобразовании уровней исходного ряда в новые переменные, не содержащие тенденции (метод последовательных разностей и метод отклонения от трендов);

Методы, основанные на изучении взаимосвязи исходных уровней временных рядов при элиминировании воздействия фактора времени на зависимую и независимую переменные модели (включение в модель регрессии по временным рядам фактора времени).

Пусть имеются два временных ряда и , каждый из которых содержит трендовую компоненту Т и случайную составляющую . Аналитическое выравнивание каждого из этих рядов позволяет найти параметры соответствующих уравнений трендов и определить расчетные по тренду уровни и соответственное. Эти расчетные значения можно принять за оценку трендовой компоненты Т каждого ряда. Поэтому влияние тенденции можно устранить путем вычитания расчетных значений уровней ряда из фактических. Эту процедуру проделывают для каждого временного ряда в модели. Дальнейший анализ взаимосвязи рядов проводят с использованием не исходных уровней, а отклонений от тренда и . Именно в этом и заключается метод отклонений от тренда.

В ряде случаев вместо аналитического выравнивания временного ряда с целью устранения тенденции можно применить более простой метод – метод последовательных разностей. Если временной ряд содержит ярко выраженную линейную тенденцию, ее можно устранить путем замены исходных уровней ряда цепными абсолютными приростами (первыми разностями).

Коэффициент b – константа, которая не зависит от времени. При наличии сильной линейной тенденции отставки достаточно малы и в соответствии с предпосылками МНК носят случайный характер. Поэтому первые разности уровней ряда не зависят от переменной времени, их можно использовать для дальнейшего анализа.

Если временной ряд содержит тенденцию в форме параболы второго порядка, то для ее устранения можно заменить исходные уровни ряда на вторые разности: .

Если тенденции временного ряда соответствует экспоненциальной, или степенной, тренд, метод последовательных разностей следует применять не к исходным уровням ряда, а к их логарифмам.

Модель вида: также относится к группе моделей, включающих фактор времени. Преимущество данной модели перед методами отклонений от трендов и последовательных разностей состоит в том, что она позволяет учесть всю информацию, содержащуюся в исходных данных, поскольку значения и – это уровни исходных временных рядов. Кроме того, модель строится по всей совокупности данных за рассматриваемый период в отличие от метода последовательных разностей, который приводит к потере числа наблюдений. Параметры этой модели определяются обычным МНК.

Пример. Построим уравнение тренда по исходным данным таблицы 4.4.

Таблица 4.4

Расходы на конечное потребление и совокупный доход (усл. ед.)

Система нормальных уравнений имеет вид:

По исходным данным рассчитаем необходимые величины и подставим в систему:

Уравнение регрессии имеет вид: .

Интерпретация параметров уравнения следующая: характеризует, что при увеличении совокупного дохода на 1 д.е. расходы на конечное потребление возрастут в среднем на 0,49 д.е в условиях существования неизменной тенденции. Параметр означает, что воздействие всех факторов, кроме совокупного дохода, на расходы на конечное потребление приведет к его среднегодовому абсолютному приросту на 0,63 д.е.

Рассмотрим уравнение регрессии вида: . Для каждого момента времени значение компоненты определяются как или . Рассматривая последовательность остатков как временной ряд, можно построить график их зависимости от времени. В соответствии с предпосылками МНК остатки должны быть случайными (рис. 4.4).


Рис. 4.4 Случайные остатки

Однако при моделировании временных рядов нередко встречаются ситуации, когда остатки содержат тенденцию или циклические колебания (рис. 4.5). Это говорит о том, что каждое следующее значение остатков зависит от предшествующих. В этом случае говорят о наличии автокорреляции в остатках.



а) б)

Рис. 4.5 Убывающая тенденция (а ) и циклические колебания (б )

в остатках

Автокорреляция случайной составляющей - корреляционная зависимость текущих и предыдущих значений случайной составляющей. Последствия автокорреляции случайной составляющей:

Коэффициенты регрессии становятся неэффективными;

Стандартные ошибки коэффициентов регрессии становятся заниженными, а значения t –критерия завышенными.

Для определения автокорреляции остатков известны два наиболее распространенных метода определения автокорреляции остатков. Первый метод – это построение графика зависимости остатков от времени и визуальное определение наличия или отсутствия автокорреляции. Второй метод – это использование критерия Дарбина-Уотсона, который сводится к проверке гипотезы:

Н0 (основная гипотеза): автокорреляция отсутствует;

Н1 и Н2 (альтернативные гипотезы): присутствует положительная или отрицательная автокорреляция в остатках соответственно.

Для проверки основной гипотезы используется статистика критерия Дарбина-Уотсона:

где .

На больших выборках d≈2(1- ), где - коэффициент автокорреляции 1-го порядка.

.

Если в остатках существует полная положительная автокорреляция и =1, то d=0; если в остатках есть полная отрицательная автокорреляция, то = -1 и d=4; если автокорреляция остатков отсутствует, то = 0, то d=2. Следовательно, 0.

Существуют специальные статистические таблицы для определения нижней и верхней критических границ d -статистики – d L и d U . Они определяются в зависимости от n, числа независимых переменных k и уровня значимости .

Если d набл ‹d L , то принимается гипотеза Н1: положительная автокорреляция.

Если d и ‹d набл ‹2,

Если 2‹d набл ‹4-d и, то принимается гипотеза Н0: автокорреляции нет.

Если d набл ›4-d L , то принимается гипотеза Н2: отрицательная автокорреляция.

Если 4-d и ‹d набл ‹4-d L , и d L ‹d набл ‹d и, то имеет место случай неопределенности.


0 d L d U 2 4- d U 4- d L 4

Рис. 4.6 Алгоритм проверки гипотезы о наличии автокорреляции остатков

Для применения критерия Дарбина-Уотсона есть ограничения. Он неприменим для моделей, включающих в качестве независимых переменных лаговые значения результативного признака, т.е. к моделям авторегрессии. Методика направлена только на выявление автокорреляции остатков первого порядка. Результаты являются более достоверными при работе с большими выборками.

В тех случаях, когда имеет место автокорреляция остатков, для определения оценок параметров a, b используют обобщенный метод МНК, который заключается в последовательности следующих шагов:

1. Преобразовать исходные переменные y t и x t к виду

2. Применив обычный МНК к уравнению , где определить оценки параметров и b.

4. Выписать исходное уравнение .

Среди эконометрических моделей, построенных по временным данным, выделяют динамические модели.

Эконометрическая модель является динамической , если в данный момент времени t она учитывает значения входящих в нее переменных, относящихся как к текущему, так и к предыдущим моментам времени, т.е. эта модель отражает динамику исследуемых переменных в каждый момент времени.

Существует два основных типа динамических эконометрических моделей. К моделям первого типа относятся модели авторегрессии и модели с распределенным лагом, в которых значение переменной за прошлые периоды времени (лаговые переменные) непосредственно включены в модель. Модели второго типа учитывают динамическую информацию в неявном виде. В эти модели включены переменные, характеризующие ожидаемый и желаемый уровень результата, или один из факторов в момент времени t.

Модель с распределенным лагом имеет вид:

Построение моделей с распределенным лагом и моделей авторегрессии имеет свою специфику. Во-первых, оценка параметров моделей авторегрессии, а в большинстве случаев и моделей распределенным лагом не может быть проведена с помощью обычного МНК ввиду нарушения его предпосылок и требует специальных статистических методов. Во-вторых, исследователям приходится решать проблемы выбора оптимальной величины лага и определения его структуры. Наконец, в третьих, между моделями с распределенным лагом и моделями авторегрессии имеется определенная взаимосвязь, и в некоторых случаях необходимо осуществить переход от одноного типа моделей к другому.

Рассмотрим модель с распределенным лагом в предположении, что максимальная величина лага конечна:

Даная модель говорит о том, что если в некоторый момент времени t происходит изменение независимой переменной x , то это изменение будет влиять на значения переменной y в течение l следующих моментов времени.

Коэффициент регрессии b 0 при переменной x t характеризует среднее абсолютное изменение y t при изменении x t на 1 ед. своего измерения в некоторый фиксированный момент времени t , без учета воздействия лаговых значений фактора x. Этот коэффициент называется краткосрочным мультипликатором.

В момент t+1 воздействие факторной переменной x t на результат y t составит (b 0 +b 1) условных единиц; в момент времени t+2 это воздействие можно охарактеризовать суммой (b 0 +b 1 +b 2) и т.д. Полученные таким образом суммы называются промежуточными мультипликаторами .

С учетом конечной величины лага можно сказать, что изменение переменной x t в момент времени t на 1 условную единицу приведет к общему изменению результата через l моментов времени (b 0 +b 1 +b 2 +…+b l ).

Введем следующее обозначение: b=(b 0 +b 1 +b 2 +…+b l ). Величину b называется долгосрочным мультипликатором , который показывает абсолютное изменение в долгосрочном периоде t+l результата y под влиянием изменения на 1 ед. фактора x .

Величины называются относительными коэффициентами модели с распределенным лагом. Если все коэффициенты b j имеют одинаковые знаки, то . Относительные коэффициенты являются весами для соответствующих коэффициентов b j . Каждый из них измеряет долю общего изменения результативного признака в момент времени t+j .

Зная величины , с помощью стандартных формул можно определить еще две важные характеристики модели множественной регрессии: величину среднего и медианного лагов.

Средний лаг рассчитывается по формуле средней арифметической взвешенной:

и представляет собой средний период, в течение которого будет происходить изменение результата под воздействием изменения фактора x в момент t. Если значение среднего лага небольшое, то это говорит о довольно быстром реагировании y на изменение x. Высокое значение среднего лага говорит о том, что воздействие фактора на результат будет сказываться в течение длительного периода времени.

Медианный лаг (L Me) – это величина лага, для которого период, в течение которого . Это тот период времени, в течение которого с момента времени t будет реализована половина общего воздействия фактора на результат.

Изложенные выше приемы анализа параметров модели с распределенным лагом действительны только в предположении, что все коэффициенты при текущем и лаговых значениях исследуемого фактора имеют одинаковые знаки. Это предположение вполне оправдано с экономической точки зрения: воздействие одного и того же фактора на результат должно быть однонаправленным независимо от того, с каким временным лагом измеряется сила или теснота связи между этими признаками. Однако на практике получить статистически значимую модель, параметры которой имели бы одинаковые знаки, особенно при большой величине лага l , чрезвычайно сложно.

Применение обычного МНК к таким моделям в большинстве случаев затруднительно по следующим причинам:

Текущие и лаговые значения независимой переменной, как правило, тесно связаны друг с другом, тем самым оценка параметров модели проводится в условиях высокой мультиколлинеарности;

При большой величине лага снижается число наблюдений, по которому строится модель, и увеличивается число ее факторных признаков, что ведет к потере числа степеней свободы в модели;

В моделях с распределенным лагом часто возникает проблема автокорреляции остатков.

Как и в модели с распределенным лагом, b 0 в этой модели характеризует краткосрочное изменение y t под воздействием изменения x t на 1 ед. Однако промежуточные и долгосрочный мультипликаторы в модели авторегрессии несколько иные. К моменту времени t+1 результат y t изменился под воздействием изменения изучаемого фактора в момент времени t на b 0 единиц, а y t +1 – под воздействием своего изменения в непосредственно предшествующим момент времени на с 1 единиц. Таким образом, общее абсолютное изменение результата в момент t+1 составит b 0 с 1 . Аналогично в момент времени t+2 абсолютное изменение результата составит b 0 с 1 2 единиц и т.д. Следовательно, долгосрочный мультипликатор в модели авторегрессии можно рассчитать как сумму краткосрочного и промежуточного мультипликаторов:

Такая интерпретация коэффициентов модели авторегрессии и расчет долгосрочного мультипликатора основаны на предпосылке о наличии бесконечного лага в воздействии текущего значения зависимой переменной на ее будущие значения.

Пример. Предположим, по данным о динамике показателей потребления и дохода в регионе была получена модель авторегрессии, описывающая зависимость среднедушевого объема потребления за год (С, млн. руб.) от среднедушевого совокупного годового дохода (Y, млн. руб.) и объема потребления предшествующего года:

.

Краткосрочный мультипликатор равен 0,85. В этой модели он представляет собой предельную склонность к потреблению в краткосрочном периоде. Следовательно, увеличение среднедушевого совокупного дохода на 1 млн. руб. приводит к росту объема потребления в тот же год в среднем на 850 тыс. руб. Долгосрочную предельную склонность к потреблению в данной модели можно определить как

.

В долгосрочной перспективе рост среднедушевого совокупного дохода на 1 млн. руб. приведет к росту объема потребления в среднем на 944 тыс. руб. Промежуточные показатели предельной склонности к потреблению можно определить, рассчитав необходимые частные суммы за соответствующие периоды времени. Например, для момента времени t+1 получим:

Это означает, что увеличение среднедушевого совокупного дохода в текущем периоде на 1 млн. руб. ведет к увеличению объема потребления в среднем на 935 тыс. руб. в ближайшем следующем периоде.

Инструкция

Линейный тренд выражает собой функцию: y=ax+b, гдеa – значение, на которое будет увеличено следующее значение во временном ряду;x – номер периода в определенном временном ряду (к примеру, номер месяца, дня или квартала);y – последовательность анализируемых значений (это могут быть продажи за месяц);b – точка пересечения, которая на графике будет с осью y (минимальный уровень).При этом, если значение a является больше нуля, то роста будет положительной. В свою очередь, если а меньше нуля, то динамика линейного тренда будет отрицательной.

Используйте линейный тренд для прогнозирования отдельных временных рядов, у которых данные увеличиваются или снижаются с постоянной скоростью. При построении линейного тренда можете использовать программу Excel. Например, если вам необходим линейный тренд для построения прогноза продаж по месяцам, тогда сделайте 2 переменных во временном ряду (время - месяцы и объем продаж).

Уравнение линейного тренда у вас будет же: y=ax+b, где y - объемы продаж, x - это месяцы.Постройте график в Excel. По оси x у вас получится ваш временной промежуток (1, 2, 3 - по месяцам: январь, февраль и т.д.), по оси y изменения объема продаж. После этого добавьте на графике линию тренда .

Продлите линию тренда для прогнозирования и определите ее значения. При этом вам должны быть известны только значения времени по оси X, а прогнозные значения вам необходимо рассчитать с помощью ранее указанной формулы.

Сопоставьте полученные прогнозные значения линейного тренда с фактическими данными. Таким образом вы сможете определить рост объема продаж в процентном соотношении.

Можете скорректировать прогнозируемые значения линейного тренда в том случае, если вас не устраивает рост, т.е. вы понимаете, что есть компоненты, которые на него могут повлиять. Если вы измените значение «a» в линейном тренде y=ax+b, тогда вы сможете увеличить наклон тренда . Так вы можете изменять наклон тренда , уровень тренда , или одновременно эти два показателя.

Источники:

  • уравнение линейного тренда

Числовая последовательность представлена функцией вида an=f(n), которая задана на множестве натуральных чисел. В большинстве случаев в числовых последовательностях f(n) заменяется на an. Числа a1, a2, …, an – члены последовательности, причем a1 – первый, a2 – второй, аk – k-ый. На основании данных функции числовой последовательности строится график.

Вам понадобится

  • - справочник по математике;
  • - линейка;
  • - тетрадь;
  • - простой карандаш;
  • - исходные данные.

Инструкция

Прежде чем приступать к построению , определите, функцией является числовая последовательность. Различают невозрастающую или неубывающую последовательность (an), для которой при любом значении n справедливым является неравенство вида: an≥an+1 или an≤an+1. При условии, что an>an+1 или an

При построении числовой последовательности обратите внимание на то, что последовательность (an) может быть ограничена снизу или сверху: для этого должно существовать

Прямая линия - трендовые значения рентабельности (линейный тренд, построенный по данным фактических значений рентабельности).  


Пример 14.6. Построим линейный тренд процентных ставок по кредитам на основе статистических данных, опубликованных в Бюллетене банковской статистики № 4 (47) за 1997 г.  

Вторым этапом является поиск значений параметров уравнения. Параметры трендовых моделей определяются с помощью системы нормальных уравнений . В случае применения линейного тренда используют следующую систему уравнений, которую решают способом наименьших квадратов  

Пример 14.7. Предполагая наличие циклических колебаний , проведем гармонический анализ динамики отклонений от линейного тренда данных о ставках по кредитам (у, - у,).  

Линейный тренд хорошо отражает тенденцию изменений при действии множества разнообразных факторов, изменяющихся различным образом по разным закономерностям. Равнодействующая этих факторов при взаимопогашении особенностей отдельных фак-  

При b = 1 имеем линейный тренд, b = 2 - параболический и т.п. Степенная форма - гибкая, пригодная для отображения изменений с разной мерой пропорциональности изменений во времени. Жестким условием является обязательное прохождение через начало координат при t = 0, у = 0. Можно усложнить форму тренда у = а + th или у = а + th, но эти уравнения нельзя логарифмировать, трудно вычислять параметры, и они крайне редко применяются.  

Для линейного тренда нормальные уравнения МНК имеют вид  

В формуле (9.33) суммирование от = -(л-1) 2до/ = (л- 1) 2 в целом формула (9.33) аналогична формуле для линейного тренда (9.29).  

Согласно формуле (9.29) параметры линейного тренда равны а = 1894/11 = 172,2 ц/га 2>Л= 486/110 = 4,418 ц/га. Уравнение линейного тренда имеет вид у = 172,2 + 4,418/, где (= 0 в 1987 г. Это означает, что средний фактический и выравненный уровень, отнесенный к середине периода, т.е. к 1991 г., равен 172 ц с 1 га, а среднегодовой прирост составляет 4,418 ц/га в год.  

Поскольку по данным табл. 9.4, уже было установлено, что тренд имеет линейную форму , проводим расчет среднегодового абсолютного прироста , т. е. параметра Ъ уравнения линейного тренда сколь-  

Колеблемость умеренная, не сильная. Для сравнения приводим показатели (без расчета) по колебаниям урожайности картофеля, данные таблиц 9.1 и 9.5 - отклонение от линейного тренда s(t) = 14,38 ц с 1 га, v(t) = 8,35%.  

Для получения достаточно надежных границ прогноза положения тренда, скажем, с вероятностью 0,9 того, что ошибка будет не более указанной, следует среднюю ошибку умножить на величину /-критерия Стьюдента при указанной вероятности (или значимости 1 - 0,9 = 0,1) и при числе степеней свободы , равном, для линейного тренда, N- 2, т. е. 15. Эта величина равна 1,753. Получаем предельную с данной вероятностью ошибку  

Другим приемом измерения корреляции в рядах динамики может служить корреляция между теми из цепных показателей рядов, которые являются константами их трендов. При линейных трендах - это цепные абсолютные приросты . Вычислив их по исходным рядам динамики (axl, ayi), находим коэффициент корреляции между абсолютными изменениями по формуле (9.52) или, что более точно, по формуле (9.51), так как средние изменения не равны нулю в отличие от средних отклонений от трендов. Допустимость данного способа основана на том, что разность между соседними уровнями в основном состоит из колебаний, а доля тренда в них невелика, следовательно, искажение корреляции от тренда очень большое при кумулятивном эффекте на протяжении длительного периода , весьма мало - за каждый год в отдельности. Однако нужно помнить, что это справедливо лишь для рядов с с-показателем, существенно меньшим единицы. В нашем примере для ряда урожайности с-по-казатель равен 0,144, для себестоимости он равен 0,350. Коэффициент корреляции цепных абсолютных изменений составил 0,928, что очень близко к коэффициенту корреляции отклонений от трендов.  

В одном из предыдущих примеров мы рассмотрели прогноз по объему производства за два месяца некой компании из Дублина. Были получены оценки на 1997 год, при этом использовался линейный тренд и метод сложения . Прогнозные значения даны в тоннах  

Значения k для оценки доверительных интервалов прогноза относительно линейного тренда с вероятностью 0,8  

Адаптивное моделирование линейного тренда с помощью экспоненциальных скользящих средних.  

Алгоритм вычисления параметров линейного тренда  

Вычислить в первом приближении параметры линейного тренда  

Определить окончательные значения параметров линейного тренда  

ЕМА ошибок могут ухудшить качество прогноза. В этом случае при расчете параметров линейного тренда нужно остановиться на шаге 2 этого алгоритма.  

LN - линейный тренд, сезонность не учитывается  

Если считать, что изменения цен, вопреки соображениям эффективности на продолжительных отрезках времени, определяются многочисленными и часто нелинейными обратными связями , то на основе теории хаоса можно построить улучшенные модели, описывающие влияние прошлого на настоящее (см. -). Драматические обвалы рынка при отсутствии существенных изменений информации, резкие изменения условий доступа и сроков при пересечении компанией какого-то невидимого порога в кредитной сфере - все это проявления нелинейности. Реальное поведение финансовых рынков , скорее, противоречит правилам обращения линейных трендов, чем подтверждает их.  

Метод последовательных разностей заключается в следующем если ряд содержит линейный тренд, тогда исходные данные заменяются первыми разностями  

Значения Лу не имеют четко выраженной тенденции, они варьируют вокруг среднего уровня, что означает наличие в ряде динамики линейного тренда (линейной тенденции). Аналогичный вывод можно сделать и по ряду х абсолютные приросты не имеют систематической направленности, они примерно стабильны, а следовательно, ряд характеризуется линейной тенденцией.  

Это привело к идее измерения корреляции не самих уровней х, иу а первых разностей Дх, = х, - , 6у, - у, - у,.., (при линейных трендах). В общем случае было признано необходимым коррелировать отклонения от трендов (за вычетом циклической компоненты) Еу -у, - %, Ех = х, - %, (у,% - тренды временных рядов).  

На графике рис. 5.3 наглядно видно наличие возрастающей тенденции. Возможно существование линейного тренда.  

Параметры линейного тренда можно интерпретировать так а - начальный уровень временного ряда в момент времени t = 0 b - средний за период абсолютный прирост уровней ряда. Применительно к данному временному ряду можно сказать, что темпы роста номинальной месячной заработной платы за 10 месяцев 1999 г. изменялись от уровня 82,66% со средним за месяц абсолютным приростом , равным 4,72 проц. пункта. Расчетные по линейному тренду значения уровней временного ряда определяются двумя способами. Во-первых, можно последовательно подставлять в найденное уравнение тренда значения / = 1, 2,..., л, т.е.  

Во-вторых, в соответствии с интерпретацией параметров линейного тренда каждый последующий уровень ряда есть сумма предыдущего уровня и среднего цепного абсолютного прироста, т. е.  

Таким образом, начальный уровень ряда в соответствии с уравнением экспоненциального тренда составляет 83,96 (сравните с начальным уровнем 82,66 в линейном тренде), а средний цепной коэффициент роста - 1,046. Следовательно, можно сказать, что

Когда тип тренда установлен, необходимо вычислить оптимальные значения параметров тренда исходя из фактических уровней. Для этого обычно используют метод наименьших квадратов (МНК). Его значение уже рассмотрено в предыдущих главах учебного пособия, в данном случае оптимизация состоит в минимизации суммы квадратов отклонений фактических уровней ряда от выравненных уровней (от тренда). Для каждого типа тренда МНК дает систему нормальных уравнений, решая которую вычисляют параметры тренда. Рассмотрим лишь три такие системы: для прямой, для параболы 2-го порядка и для экспоненты. Приемы определения параметров других типов тренда рассматриваются в специальной монографической литературе.

Для линейного тренда нормальные уравнения МНК имеют вид:

Нормальные уравнения МНК для экспоненты имеют следующий вид:

По данным табл. 9.1 рассчитаем все три перечисленных тренда для динамического ряда урожайности картофеля с целью их сравнения (см. табл. 9.5).

Таблица 9.5

Расчет параметров трендов

Согласно формуле (9.29) параметры линейного тренда равны а = 1894/11 = 172,2 ц/га; b = 486/110 = 4,418 ц/га. Уравнение линейного тренда имеет вид:

у ̂ = 172,2 + 4,418t , где t = 0 в 1987 г Это означает,что средний фактический и выравненный уровень, отнесенный к середине периода, т.е. к 1991 г., равен 172 ц с 1 ra a среднегодовой прирост составляет 4,418 ц/га в год

Параметры параболического тренда согласно (9.23) равны- b = 4,418; a = 177,75; с = -0,5571. Уравнение параболического тренда имеет вид у̃ = 177,75 + 4,418t - 0.5571t 2 ; t = 0 в 1991 г. Это означает, что абсолютный прирост урожайности замедляется в среднем на 2·0,56 ц/га в год за год. Сам же абсолютный прирост уже не является константой параболического тренда, а является средней величиной за период. В год, принятый за начало отсчета т.е. 1991 г., тренд проходит через точку с ординатой 77,75 ц/га; Свободный член параболического тренда не является средним уровнем за период. Параметры экспоненциального тренда вычисляются по формулам(9.32) и (9.33) lnа = 56,5658/11 = 5,1423; потенцируя, получаем а = 171,1; lnk = 2,853:110 = 0,025936; потенцируя, получаем k = 1,02628.

Уравнение экспоненциального тренда имеет вид: y ̅ = 171,1·1,02628 t .

Это означает, что среднегодовой темп поста урожайности за период составил 102,63%. В точке принятК начало отсчета, тренд проходит точку с ординатой 171,1 ц/га.

Рассчитанные по уравнениям трендов уровни записаны в трех последних графах табл. 9.5. Как видно по этим данным. расчетные значения уровней по всем трем видам трендов различаются ненамного, так как и ускорение параболы, и темп роста экспоненты невелики. Существенное отличие имеет парабола - рост уровней с 1995 г. прекращается, в то время как при линейном тренде уровни растут и далее, а при экспоненте их ост ускоряется. Поэтому для прогнозов на будущее эти три тренда неравноправны: при экстраполяции параболы на будущие годы уровни резко разойдутся с прямой и экспонентой, что видно из табл. 9.6. В этой таблице представлена распечатка решения на ПЭВМ по программе «Statgraphics» тех же трех трендов. Отличие их свободных членов от приведенных выше объясняется тем, что программа нумерует года не от середины, а от начала, так что свободные члены трендов относятся к 1986 г., для которого t = 0. Уравнение экспоненты на распечатке оставлено в логарифмированном виде. Прогноз сделан на 5 лет вперед, т.е. до 2001 г.. При изменении начала координат (отсчета времени) в уравнении параболы меняется и средний абсолютной прирост, параметр b . так как в результате отрицательного ускорения прирост все время сокращается, а его максимум - в начале периода. Константой параболы является только ускорение.

В строке «Data» приводятся уровни исходного ряда; «Forecast summary» означает сводные данные для прогноза. В следующих строках - уравнения прямой, параболы, экспоненты - в логарифмическом виде. Графа ME означает среднее расхождение между уровнями исходного ряда и уровнями тренда (выравненными). Для прямой и параболы это расхождение всегда равно нулю. Уровни экспоненты в среднем на 0,48852 ниже уровней исходного ряда. Точное совпадение возможно, если истинный тренд - экспонента; в данном случае совпадения нет, но различие, мало. Графа МАЕ -это дисперсия s 2 - мера колеблемости фактических уровней относительно тренда, о чем сказано в п. 9.7. Графа МАЕ - среднее линейное отклонение уровней от тренда по модулю (см. параграф 5.8); графа МАРЕ - относительное линейное отклонение в процентах. Здесь они приведены как показатели пригодности выбранного вида тренда. Меньшую дисперсию и модуль отклонения имеет парабола: она за период 1986 - 1996 гг. ближе к фактическим уровням. Но выбор типа тренда нельзя сводить лишь к этому критерию. На самом деле замедление прироста есть результат большого отрицательного отклонения, т. е. неурожая в 1996 г.

Вторая половина таблицы - это прогноз уровней урожайности по трем видам трендов на годы; t = 12, 13, 14, 15 и 16 от начала отсчета (1986 г.). Прогнозируемые уровни по экспоненте вплоть до 16-го года ненамного выше,.чем по прямой. Уровни тренда-параболы - снижаются, все более расходясь с другими трендами.

Как видно в табл. 9.4, при вычислении параметров тренда уровни исходного ряда входят с разными весами - значениями t p и их квадратов. Поэтому влияние колебаний уровней на параметры тренда зависит от того, на какой номер года приходится урожайный либо неурожайный год. Если резкое отклонение приходится на год с нулевым номером (t i = 0 ), то оно никакого влияния на параметры тренда не окажет, а если попадет на начало и конец ряда, то повлияет сильно. Следовательно, однократное аналитическое выравнивание неполно освобождает параметры тренда от влияния колеблемости, и при сильных колебаниях они могут быть сильно искажены, что в нашем примере случилось с параболой. Для дальнейшего исключения искажающего влияния колебаний на параметры тренда следует применить метод многократного скользящего выравнивания.

Этот прием состоит в том, что параметры тренда вычисляются не сразу по всему ряду, а скользящим методом, сначала за первые т периодов времени или моментов, затем за период от 2-го до т + 1, от 3-го до (т + 2)-го уровня и т.п. Если число исходных уровней ряда равно п, а длина каждой скользящей базы расчета параметров равна т, то число таких скользящих баз t или отдельных значений параметров, которые будут по ним определены, составит:

L = п + 1 - т.

Применение методики скользящего многократного выравнивания рассматривать, как видно из приведенных расчетов, возможно только при достаточно большом числе уровней ряда, как правило 15 и более. Рассмотрим эту методику на примере данных табл. 9.4 -динамики цен на нетопливные товары развивающихся стран, что опять же дает возможность читателю участвовать в небольшом научном исследовании. На этом же примере продолжим и методику прогнозирования в разделе 9.10.

Если вычислять в нашем ряду параметры по 11 -летним периодам (по 11 уровням), то t = 17 + 1 - 11 = 7. Смысл многократного скользящего выравнивания в том, что при последовательных сдвигах базы расчета параметров на концах ее и в середине окажутся разные уровни с разными по знаку и величине отклонениями от тренда. Поэтому при одних сдвигах базы параметры будут завышаться, при других - занижаться, а при последующем усреднении значений параметров по всем сдвигам базы расчета произойдет дальнейшее взаимопогашение искажений параметров тренда колебаниями уровней.

Многократное скользящее выравнивание не только позволяет получить более точную и надежную оценку параметров тренда, но и осуществить контроль правильности выбора типа уравнения тренда. Если окажется, что ведущий параметр тренда, его константа при расчете по скользящим базам не беспорядочно колеблется, а систематически изменяет свою величину существенным образом, значит, тип тренда был выбран неверно, данный параметр константой не является.

Что касается свободного члена при многократном выравнивании, то нет необходимости и, более того, просто неверно вычислять его величину как среднюю по всем сдвигам базы, ибо при таком способе отдельные уровни исходного ряда входили бы в расчет средней с разными весами, и сумма выравненных уровней разошлась бы с суммой членов исходного ряда. Свободный член тренда - это средняя величина уровня за период, при условии отсчета времени от середины периода. При отсчете от начала, если первый уровень t i = 1, свободный член будет равен: a 0 = у ̅ - b ((N-1)/2). Рекомендуется длину скользящей базы расчета параметров тренда выбирать не менее 9-11 уровней, чтобы в достаточной мере погасить колебания уровней. Если исходный ряд очень длинный, база может составлять до 0,7 - 0,8 его длины. Для устранения влияния долго-периодических (циклических) колебаний на параметры тренда, число сдвигов базы должно быть равно или кратно длине цикла колебаний. Тогда начало и конец базы будут последовательно «пробегать» все фазы цикла и при усреднении параметра по всем сдвигам его искажения от циклических колебаний будут взаимопогашаться. Другой способ - взять длину скользящей базы, равной длине цикла, чтобы начало базы и конец базы всегда приходились на одну и ту же фазу цикла колебаний.

Поскольку по данным табл. 9.4, уже было установлено, что тренд имеет линейную форму, проводим расчет среднегодового абсолютного прироста, т. е. параметра b уравнения линейного тренда скользящим способом по 11-летним базам (см. табл. 9.7). В ней же приведен расчет данных, необходимых для последующего изучения колеблемости в параграфе 9.7. Остановимся подробнее на методике многократного выравнивания по скользящим базам. Рассчитаем параметр b по всем базам:

Таблица 9.7

Многократное скользящее выравнивание по прямой



Уравнение тренда: у ̂ = 104,53 - 1,433t ; t = 0 в 1987 г. Итак, индекс цен в среднем за год снижался на 1,433 пункта. Однократное выравнивание по всем 17 уровням может исказить этот параметр, ибо начальный уровень содержит значительное отрицательное отклонение, а конечный уровень - положительное. В самом деле, однократное выравнивание дает величину среднегодового изменения индекса всего на 0,953 пункта.




9.7. Методика изучения и показатели колеблемости

Если при изучении и измерении тенденции динамики колебания уровней играли лишь роль помех, «информационного шума», от которого следовало по возможности абстрагироваться, то в дальнейшем сама колеблемость становится предметом статистического исследования. Значение изучения колебаний уровней динамического ряда очевидно: колебания урожайности, продуктивности скота, производства мяса экономически нежелательны, так как потребность в продукции агрокомплекса постоянна. Эти колебания следует уменьшать, применяя прогрессивную технологию и другие меры. Напротив, сезонные колебания объемов производства зимней и летней обуви, одежды, мороженого, зонтиков, коньков - необходимы и закономерны, так как спрос на эти товары тоже колеблется по сезонам и равномерное производство требует лишних затрат на хранение запасов. Регулирование рыночной экономики как со стороны государства, так и производителей в значительной мере состоит в регулировании колебаний экономических процессов.

Типы колебаний статистических показателей весьма разнообразны, но все же можно выделить три основных: пилообразную или маятниковую колеблемость, циклическую долгопериодическую и случайно распределенную во времени колеблемость. Их свойства и отличия друг от друга хорошо видны при графическом изображении рис. 9.2.

Пилообразная или маятниковая колеблемость состоит в попеременных отклонениях уровней от тренда в одну и в другую сторону. Таковы автоколебания маятника. Такие автоколебания можно наблюдать в динамике урожайности при невысоком уровне агротехники: высокий урожай при благоприятных условиях погоды выносит из почвы больше питательных веществ, чем их образуется естественным путем за год; почва обедняется, что вызывает снижение следу- ющего урожая ниже тренда, он выносит меньше питательных веществ, чем образуется за год, плодородие возрастает и т.д.

Рис. 9.2. Виды колебаний

Циклическая долгопериодическая колеблемость свойственна, например, солнечной активности (10-11-летние циклы), а значит, и связанным с ней на Земле процессам - полярным сияниям, грозовой деятельности, урожайности отдельных культур в ряде районов, некоторым заболеваниям людей, растений. Для этого типа характерны редкая смена знаков отклонений от тренда и кумулятивный (накапливающийся) эффект отклонений одного знака, который может тяжело отражаться на экономике. Зато колебания хорошо прогнозируются.

Случайно распределенная во времени колеблемость - нерегулярная, хаотическая. Она может возникать при наложении (интерференции) множества колебаний с разными по длительности циклами. Но может возникать в результате столь же хаотической колеблемости главной причины существования колебаний, например суммы осадков за летний период, температуры воздуха в среднем за месяц в разные годы.

Для определения типа колебаний применяются графическое изображение, метод «поворотных точек» М. Кендэла, вычисление коэффициентов автокорреляции отклонений от тренда. Эти методы будут рассмотрены далее.

Основными показателями, характеризующими силу колеблемости уровней, выступают уже известные по главе 5 показатели, характеризующие вариацию значений признака в пространственной совокупности. Однако вариация в пространстве и колеблемость во времени принципиально различны. Прежде всего различны их основные причины. Вариация значений признака у одновременно существующих единиц возникает из-за различий в условиях существования единиц совокупности. Например, разная урожайность картофеля в совхозах области в 1990 г. вызвана различиями в плодородии почв, в качестве семян, в агротехнике. А вот суммы эффективных температур за вегетационный период и осадков не являются причинами пространственной вариации, так как в одном и том же году на территории области эти факторы почти не варьируют. Напротив, главными причинами колебания урожайности картофеля в области за ряд лет как раз являются колебания метеорологических факторов, а качество почв колебаний почти не имеет. Что же касается общего прогресса агротехники, то он является причиной тренда, но не колеблемости.

Второе коренное отличие состоит в том, что значения варьирующего признака в пространственной совокупности можно считать в основном не зависимыми друг от друга, напротив, уровни динамического ряда, как правило, являются зависимыми: это показатели развивающегося процесса, каждая стадия которого связана с предыдущими состояниями.

В-третьих, вариация в пространственной совокупности измеряется отклонениями индивидуальных значений признака от среднего значения, а колеблемость уровней динамического ряда измеряется не их отличиями от среднего уровня (эти отличия включают и тренд, и колебания), а отклонениями уровней от тренда.

Поэтому лучше использовать разные термины: различия признака в пространственной совокупности называть только вариацией, но не колебаниями: никто же не станет называть различия численности населения Москвы, Петербурга, Киева и Ташкента «колебаниями числа жителей»! Отклонения уровней динамического ряда от тренда будем называть всегда колеблемостью. Колебания всегда происходят во времени, не может существовать колебаний вне времени, в фиксированный момент.

На основе качественного содержания понятия колеблемости строится и система ее показателей. Показателями силы колебании уровней являются: амплитуда отклонений уровней отдельных периодов или моментов от тренда (по модулю), среднее абсолютное отклонение уровней от тренда (по модулю), среднее квадратическое откло;-нение уровней от тренда. Относительные меры колеблемости: относительное линейное отклонение от тренда и коэффициент колеблемости - аналог коэффициента вариации.

Особенностью методики вычисления средних отклонений от тренда является необходимость учета потерь степеней свободы колебаний на величину, равную числу параметров уравнения тренда. Например, прямая линия имеет два параметра, и, как известно из геометрии, через любые две точки можно провести прямую линию. Значит, имея лишь два уровня, мы проведем линию тренда точно через эти два уровня, и никаких отклонений уровней от тренда не окажется, хотя на самом деле и эти два уровня включали колебания, не были свободны от действия факторов колеблемости. Парабола второго порядка пройдет точно через любые три точки и т.п.

Учитывая потерю степеней свободы, основные абсолютные показатели колеблемости вычисляются по формулам (9.34) и (9.35):

среднее линейное отклонение

(9.34)

среднее квадратичное отклонение

(9.35)

где y i - фактический уровень;

y ̂ i - выравненный уровень, тренд;

n - число уровней;

р - число параметров тренда.

Знак времени «t » в скобках после показателя означает, что это показатель не обычной пространственной вариации, как в главе V, а показатель колеблемости во времени.

Относительные показатели колеблемости вычисляются делением абсолютных показателей на средний уровень за весь изучаемый период. Расчет показателей колеблемости проведем по результатам анализа динамики индекса цен (см. табл. 9.7). Тренд примем по результатам многократного скользящего выравнивания, т. е. у ̂ = 104,53 - 1,433t ; t = 0 в 1987 г.

1. Амплитуда колебаний составила от -14,0 в 1986 г. до +15,2 в 1984 г., т.е. 29,2 пункта.

2. Среднее линейное отклонение по модулю найдем, сложив модули |u i | (их сумма равна 132,3), и разделив на (п - р), согласно формуле (9.34):

=8,82 пункта.

3. Среднее квадратическое отклонение уровней от тренда по формуле (9.35) составило:

= 9,45 пункта.

Небольшое превышение среднего квадратического отклонения над линейным указывает на отсутствие среди отклонений резко выделяющихся по абсолютной величине.

4. Коэффициент колеблемости: или 9,04%. Колеблемость умеренная, не сильная. Для сравнения приводим показатели (без расчета) по колебаниям урожайности картофеля, данные таблиц 9.1 и 9.5 - отклонение от линейного тренда:

s (t ) = 14,38 ц с 1 га, v (t ) = 8,35%.

Для выявления типа колебаний воспользуемся приемом, предложенным М. Кендэлом. Он состоит в подсчете так называемых «поворотных точек» в ряду отклонений от тренда и i т. е. локальных экстремумов. Отклонение, либо большее по алгебраической величине, либо меньшее двух соседних, отмечается точкой. Обратимся к рис. 9.2. При маятниковой колеблемости все отклонения, кроме двух крайних, будут «поворотными», следовательно, их число составит п - 1. При долгопериодических циклах на цикл приходятся один минимум и один максимум, а общее число точек составит 2(n : l ), где l - длительность цикла. При случайно распределенной во времени колеблемости, как доказал М. Кендэл, число поворотных точек в среднем составит: 2/3 (n - 2). В нашем примере при маятниковой колеблемости было бы 15 точек, при связанной с 11-летним циклом было бы 2-(17: 11) ≈ 3 точки, при случайно распределенной во времени в среднем было бы (2/3)·(17-2) =10 точек.

Фактическое число точек 6 выходит за границы двукратного среднего квадратического отклонения числа поворотных точек, которое по Кендэлу равно , в нашем случае .

Наличие 6 точек, при 2 точках за цикл, означает, что в ряду могут быть примерно 3 цикла, продолжительность периода которых 5,5 - 6 лет. Возможно сочетание таких циклических колебаний со случайными.

Другой метод анализа типа колеблемости и поиска длины цикла основан на вычислении коэффициентов автокорреляции отклонений от тренда.

Автокорреляция - это корреляция между уровнями ряда или отклонениями от тренда, взятыми со сдвигом во времени: на 1 период (год), на 2, на 3 и т. д., поэтому говорят о коэффициентах автокорреляции разных порядков: первого, второго и т. д. Рассмотрим сначала коэффициент автокорреляции отклонений от тренда первого порядка.

Одна из основных формул для расчета коэффициента автокорреляции отклонений от тренда имеет вид:

(9.36)

Как легко видеть по табл. 9.7, первое и последнее в ряду отклонения участвуют только в одном произведении в числителе, а все прочие отклонения от второго до (п - 1)-го - в двух. Поэтому и в знаменателе квадраты первого и последнего отклонений следует взять с половинным весом, как в хронологической средней. По данным табл. 9.7 имеем:

Теперь обратимся к рис. 9.2. При маятниковой колеблемости все произведения в числителе будут отрицательными величинами, и коэффициент автокорреляции первого порядка будет близок к -1. При долголериодических циклах будут преобладать положительные произведения соседних отклонений, а смена знака происходит лишь дважды за цикл. Чем длиннее Цикл, тем больше перевес положительных произведений в числителе, и коэффициент автокорреляции первого порядка ближе к +1. При случайно распределенной во времени колеблемости знаки отклонений чередуются хаотически, число положительных произведений близко к числу отрицательных, ввиду чего коэффициент автокорреляции близок к нулю. Полученное значение говорит о наличии как случайно распределенных во времени колебаний, так и циклических. Коэффициенты автокорреляции следующих порядков: II = - 0,577; Ш = -0,611; IV == -0,095; V = +0,376; VI = +0,404; VII = +0,044. Следовательно, противофаза цикла ближе всего кЗ годам (наибольший отрицательный коэффициент при сдвиге на 3 года), а совпадающие фазы ближе к б годам, что и дает длину цикла колебаний. Эти максимальные по абсолютной величине коэффициенты не близки к единице. Это означает, что циклическая колеблемость смешана со значительной случайной колеблемостью. Таким образом, подробный автокорреляционный анализ в целом дал те же результаты, что и выводы по автокорреляции первого порядка.

Если динамический ряд достаточно длинен, можно поставить и решить задачу об изменении показателей колеблемости с течением времени. Для этого рассчитывают эти показатели по подпериодам, но длительностью не менее 9-11 лет, иначе измерения колеблемости ненадежны. Кроме того, можно рассчитывать показатели колеблемости скользящим способом, а затем произвести их выравнивание, т. е. вычислить тренд показателей колеблемости. Это полезно, чтобы сделать вывод о действенности мер, применявшихся для уменьшения колебаний урожайности и других нежелательных колебаний, а также для того, чтобы по тренду сделать прогноз ожидаемых в будущем размеров колебаний.

9.8. Измерение устойчивости в динамике

Понятие «устойчивость» используется в весьма различных смыслах. По отношению к статистическому изучению динамики мы рассмотрим два аспекта этого понятия: 1) устойчивость как категория, противоположная колеблемости; 2) устойчивость направленности изменений, т. е. устойчивость тенденции.

В первом понимании показатель устойчивости, который может быть только относительным, должен изменяться от нуля до единицы (100%). Это разность между единицей и относительным показателем колеблемости. Коэффициент колеблемости составил 9,0%. Следовательно, коэффициент устойчивости равен 100% - 9,0% = 91,0%. Этот показатель характеризует близость фактических уровней к тренду и совершенно не зависит от характера последнего. Слабая колеблемость и высокая устойчивость уровней в данном смысле могут существовать даже при полном застое в развитии, когда тренд выражен горизонтальной прямой.

Устойчивость во втором смысле характеризует не сами по себе уровни, а процесс их направленного изменения. Можно узнать, например, насколько устойчив процесс сокращения удельных затрат ресурсов на производство единицы продукции, является ли устойчивой тенденция снижения детской смертности и т. д. С этой точки зрения полной устойчивостью направленного изменения уровней динамического ряда следует считать такое изменение, в процессе которого каждый следующий уровень либо выше всех предшествующих (устойчивый рост), либо ниже всех предшествующих (устойчивое снижение). Всякое нарушение строго ранжированной последовательности уровней свидетельствует о неполной устойчивости изменений.

Из определения понятия устойчивости тенденции вытекает и метод построения ее показателя. В качестве показателя устойчивости можно использовать коэффициент корреляции рангов Ч. Спирмэна (Spearman) - r x .

где п - число уровней;

Δ i - разность рангов уровней и номеров периодов времени.

При полном совпадении рангов уровней, начиная с наименьшего, и номеров периодов (моментов) времени по их хронологическому порядку коэффициент корреляции рангов равен +1. Это значение соответствует случаю полной устойчивости возрастания уровней. При полной противоположности рангов уровней рангам лет коэффициент Спирмэна равен -1, что означает полную устойчивость процесса сокращения уровней. При хаотическом чередовании рангов уровней коэффициент близок к нулю, это означает неустойчивость какой-либо тенденции. Приведем расчет коэффициента корреляции Спирмэна по данным о динамике индекса цен (табл. 9.7) в табл. 9.8.

Таблица 9.8

Расчет коэффициентов корреляции рангов Спирмена

Ранг лет, Р x

Ранг уровней, Р у

Р x y

(P x -P y ) 2

Ввиду наличия трех пар «связанных рангов» применяем формулу (8.26):

Отрицательное значение r x указывает на наличие тенденции снижения уровней, причем устойчивость этой тенденции ниже средней.

При этом следует иметь в виду, что даже при 100%-ной устойчивости тенденции в ряду динамики может быть колеблемость уровней, и коэффициент их устойчивости будет ниже 100%. При слабой колеблемости, но еще более слабой тенденции, напротив, возможен высокий коэффициент устойчивости уровней, но близкий к нулю коэффициент устойчивости тренда. В целом же оба показателя связаны, конечно, прямой зависимостью: чаще всего большая устойчивость уровней наблюдается одновременно с большей устойчивостью тренда.

Устойчивость тенденции развития или комплексная устойчивость, в динамике может быть охарактеризована соотношением между среднегодовым абсолютным изменением и средним квадратическим (либо линейным) отклонением уровней от тренда:

Если, как нередко бывает, распределение отклонений уровней ряда от тренда близко к нормальному, то с вероятностью 0,95 отклонение от тренда вниз не превысит 1,645s (t ) по величине. Следовательно, если в ряду динамики

с > 1,64, то уровни, более низкие, чем предыдущие, в среднем будут встречаться менее 5раз за 100 периодов, или 1 раз из 20, т. е. устойчивость тренда будет высока. При с = 1 нарушения ранжированности уровней будут встречаться в среднем 16 раз из 100, а при с = 0,5 – уже 31 раз из 100, т. е. устойчивость тенденции будет низкой. Можно также пользоваться отношением среднего темпа прироста к коэффициенту колеблемости, что дает показатель, близкий к с - показателю устойчивости. Этот показатель более пригоден для экспоненциального тренда. О показателях устойчивости нелинейных трендов и об общих проблемах устойчивости экономических и социальных процессов можно подробнее прочесть в рекомендуемой к данной главе литературе .