Статьи психологические методы подготовки работников к нововведениям. Методы формирования позитивного отношения к нововведениям в организации

Головной мозг располагается в мозговом отделе черепа. Его средний вес 1360 г. Выделяют три больших отдела мозга: ствол, подкорковый отдел и кару больших полушарий. Из основания мозга выходят 12 пар черепных нервов.

1 - верхний участок спинного мозга; 2 - продолговач ый мозг, 3 - мост, 4 - мозжечок; 5 - средний мозг; 6 - четверохолмие; 7 - промежуточный мозг; 8 - кора больших полушарий; 9 - мозолистое тело, соединяющее правое полушарие с новым; 10 - перекрест зрительных нервов; 11 - обонятельные луковицы.

Отделы головного мозга и их функции

Отделы мозга

Структуры отделов

Функции

СТВОЛ МОЗГА

Задний мозг

Продолговатый мозг

Здесь находятся ядра с отходящими парами черепно-мозговы> нервов:

XII - подъязычных; XI - добавочных; X - блуждающих; IX - языкоглоточных нервов

Проводниковая - связь спинного и вышележащих отделов головного мозга.

Рефлекторные:

1) регуляция деятельности дыхательной, сердечно-сосудистой и пищеварительной систем;

2) пищевые рефлексы слюноотделения, жевания, глотания;

3) защитные рефлексы: чихание, моргание, кашель, рвота;

Варолиев мост

содержит ядра: VIII - слухового; VII - лицевого; VI - отводящего; V - тройничного нервов.

Проводниковая - содержит восходящие и нисходящие нервные пути и нервные волокна, соединяющие полушария мозжечка между собой и с корой большого мозга. Рефлекторная - отвечает за вестибулярные и шейные рефлексы, регулирующие тонус мышц, в т.ч. мимических мышц.

Мозжечок

Полушария мозжечка соединены между собой и образованы серым и белым веществом.

Координация произвольных движений и сохранение положения тела в пространстве. Регуляция мышечного тонуса и равновесия.

Ретикулярная формация - сеть нервных волокон, оплетающих ствол мозга и промежуточный мозг. Обеспечивает взаимодействие восходящих и нисходящих путей мозга, координацию различных функций организма и регуляцию возбудимости всех отделов ЦНС.

Средний мозг

Четверохолмие

С ядрами первичных зрительных и слуховых центров.

Ножки мозга

С ядрами IV - глазодвигательного III - блокового нервов.

Проводниковая.

Рефлекторны:

1) ориентировочные рефлексы на зрительные и звуковые раздражители,которые проявляются в повороте головы и туловища;

2) регуляция мышечного тонуса и позы тела.

ПОДКОРКА

Передний мозг

Промежуточный мозг:

а) таламус (зрительный бугор) с ядрами ll -й пары зрительных нервов;

Сбор и оценка всей поступающей информации от органов чувств. Выделение и передача в кору мозга наиболее важной информации. Регуляция эмоционального поведения.

б) гипоталамус.

Высший подкорковый центр вегетативной нервной системы и всех жизненно важных функций организма. Обеспечение постоянства внутренней среды и обменных процессов организма. Регуляция мотивированного поведения и обеспечение защитных реакций (жажда, голод, насыщение, страх, ярость, удовольствие и неудовольствие). Участие в смене сна и бодрствования.

Базальные ганглии (подкорковые ядра)

Роль в регуляции и координации двигательной активности (вместе с таламусом и мозжечком). Участие в создании и запоминании программ целенаправленных движений,обучения и памяти.

КОРА БОЛЬШИХ ПОЛУШАРИЙ

Древняя и старая кора (обонятельный и висцеральный мозг) Содержит ядра 1-ой пары обонятельных нервов.

Древняя и старая кора вместе с некоторыми подкорковыми структурами формирует лимбическую систему, которая:

1) отвечает за врожденные поведенческие акты и формирование эмоций;

2) обеспечивает гомеостаз и контроль реакций, направленных на самосохранение и сохранение вида:

3 влияет на регуляцию вегетативных функций.

Новая кора

1) Осуществляет высшую нервную деятельность, отвечает за сложное сознательное поведение и мышление. Развитие морали, воли, интеллекта, связаны с деятельностью коры.

2) Осуществляет восприятие, оценку и обработку всей поступающей информации от органов чувств.

3) Координирует деятельность всех систем организма.

4) Обеспечивает взаимодействие организма с внешней средой.


Кора больших полушарий головного мозга

Кора больших полушарий - филогенетически наиболее молодое образование мозга. За счет борозд общая площадь поверхности коры взрослого человека 1700 2000 см2. В коре насчитывают от 12 до 18 млрд, нервных клеток, которые расположены в несколько слоев. Кора представляет собой слой серого вещества толщиной 1,5-4 мм.

На рисунке ниже показаны функциональные зоны и доли коры головного мозга

Расположение серого и белого вещества

Доли полушарий

Зоны полушарий

Кора – серое вещество, белое вещество нахо-дится под ко-рой, в белом веществе есть скопления серо-го вещества в виде ядер

Центры речи

Теменная

Кожно-мышечная зона

Контроль дви-жений, спо-собность раз-личать раздражения

Височная

Слуховая зона

Дуги рефлексов, различающих звуковые раздражения

Вкусовая и обонятельная зоны

Рефлексы различения вкусов и запахов

Затылочная

Зрительная зона

Различение зрительных раздражений

Чувствительная и двигательная зоны коры больших полушарий

Левое полушарие мозга

Правое полушарие мозга

Левое полушарие ("мыслительное”, логическое) - - отвечает за регуляцию речевой деятельности, устной речи, письма, счета и логического мышления. Доминантное у правшей.

Правое полушарие ("художественное", эмоциональное) - - участвует в распознавании зрительных, музыкальных образов, формы и структуры предметов, в сознательной ориентации в пространстве.

Поперечный срез левого полушария через чувствительные центры

Представительство тела в чувствительной зоне коры больших полушарий. Чувствительная зона каждого полушария получает информацию от мышц, кожи и внутренних органов противоположной стороны тела.

Поперечный срез правого полушария через двигательные центры

Представительство тела в двигательной зоне коры больших полушарий. Каждый участок двигательной зоны контролирует движения конкретной мышцы.

_______________

Источник информации:

Биология в таблицах и схемах./ Издание 2е, - СПб.: 2004.

Резанова Е.А. Биология человека. В таблицах и схемах./ М.: 2008.

Тема нашей лекции « Функции коры больших полушарий».

Головной мозг находится в полости мозгового черепа. Имеет выпуклую верхнелатеральную и нижнюю поверхности, а также уплощенную поверхность - основание головного мозга.

Большой мозг состоит из двух полушарий - правого и левого, которые связаны комиссурой - мозолистым телом. Правое и левое полушария делятся с помощью продольной щели. Под комиссурой находится свод, представляющий собой два изогнутых волокнистых тяжа, которые в средней части соединены между собой, а спереди и сзади расходятся, образуя столбы и ножки свода. Спереди от столбов свода находится передняя спайка. Между мозолистым телом и сводом натянута тонкая вертикальная пластинка мозговой ткани - прозрачная перегородка.

Полушария имеют верхнелатеральную, медиальную и нижнюю поверхности. Верхнелатеральная - выпуклая, медиальная - плоская, обращенная к такой же поверхности другого полушария, и нижняя - неправильной формы. На трех поверхностях располагаются глубокие и мелкие борозды, и между ними извилины. Борозды - углубления между извилинами. Извилины - возвышения мозгового вещества.

Поверхности полушарий большого мозга отделены друг от друга краями - верхним, нижнелатеральным и нижневертикальным. В пространстве между двумя полушариями входит большой серповидный отросток, представляющий собой тонкую пластинку твердой оболочки, которая проникает в продольную щель большого мозга, не достигая мозолистого тела, и отделяет друг от друга правое и левое полушария.

Наиболее выступающие участки полушарий получили название полюсов: лобного, затылочного и височного. Рельеф поверхностей полушарий большого мозга очень сложен и связи с наличием более или менее глубоких борозд большого мозга и расположенных между ними валикообразных возвышений - извилин. Глубина, протяженность некоторых борозд и извилин, их форма и направление очень изменчивы.

Каждое полушарие делится на доли - лобную, теменную, затылочную, височную , островковую. Центральная борозда отделяет лобную долю от теменной, латеральная борозда - височную долю от лобной и теменной, теменно-затылочная борозда разделяет теменную и затылочную доли.

Кора больших полушарий состоит горизонтальных слоев, расположенных в направлении с поверхности в глубь.

I. Молекулярный слой имеет очень мало клеток, но большое количество ветвящихся дендритов пирамидных клеток, формирующих сплетение, расположенное параллельно поверхности. На этих дендритах образуют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

II. Наружный зернистый слой составлен в основном звездчатыми и частично малыми пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, образуя кортикокортикальные связи.

III. Наружный пирамидный слой состоит преимущественно из пирамидных клеток средней величины. Аксоны этих клеток, как и зернистые клетки II слоя, образуют кортикокортикальные ассоциативные связи.

IV. Внутренний зернистый слой по характеру клеток и расположению их волокон аналогичен наружному зернистому слою. На нейронах этого слоя образуют синаптические окончания афферентные волокна, идущие от нейронов специфических ядер таламуса и, следовательно, от рецепторов сенсорных систем.

V. Внутренний пирамидный слой образован средними и крупными пирамидными клетками, причем гигантские пирамидные клетки Беца расположены в двигательной коре. Аксоны этих клеток образуют эфферентные кортикоспинальные и кортикобульбарный двигательные пути.

VI. Слой полиморфных клеток образован преимущественно веретенообразными клетками, аксоны которых образуют кортикоталамические пути.

В первом и четвертом слоях происходят восприятие и обработка поступающих в кору сигналов. Нейроны второго и третьего слоев осуществляют кортикокортикальные ассоциативные связи. Покидающие кору эфферентные пути формируются преимущественно в пятом и шестом слоях.

Более детально деление коры на различные поля проведено на основе формы и расположения нейронов Бродманом, который выделил 11 областей, включающих в себя 52 поля, многие из которых характеризуются функциональными и нейрохимическими особенностями. По Бродману лобная область включает следующие поля: 8, 9, 10, 11, 12, 44, 45, 46, 47. В прецентральную область входят 4 и 6 поле, в постцентральную область входят 1, 2, 3 и 43 поле. Теменная область включает в себя поля 5, 7, 39, 40, а затылочная область 17 18 19. Височная область состоит из очень большого количества полей.

В коре выделяют сенсорные, ассоциативные и двигательные зоны, исходя из расположения нейронов:

Проблема локализации функций в коре больших полушарий имеет три концепции:

Принцип узкой локализации - все функции помещены в одну, отдельно взятую структуру.

Концепция эквипотенциала - различные корковые структуры функционально равноценны.

Принцип многофункциональности корковых полей.

Свойство мультифункциональности позволяет данной структуре включаться в обеспечение различных форм деятельности, реализуя при этом основную, генетически присущую ей функцию. Степень мультифункциональности различных корковых структур неодинакова: например, в полях ассоциативной коры она выше, чем в первичных сенсорных полях, а в корковых структурах выше, чем в стволовых. В основе мультифункциональности лежит многоканальность поступления в кору мозга афферентного возбуждения, перекрытие афферентных возбуждений, особенно на таламическом и корковым уровнях, модулирующее влияние различных структур (неспецифического таламуса, базальных ганглиев) на корковые функции, взаимодействие корково-подкорковых и межкорковых путей проведения возбуждения.

Одним из наиболее крупных вариантов функционального разделения новой коры головного мозга является выделение в ней сенсорной, ассоциативной и двигательной областей.

Сенсорные области коры - это зоны, в которые проецируются сенсорные раздражители. Сенсорные области коры иначе называют: проекционной корой или корковыми отделами анализаторов. Они расположены преимущественно в теменной, височной и затылочной долях. Афферентные пути в сенсорную кору поступают преимущественно от специфических сенсорных ядер таламуса. Сенсорная кора имеет хорошо выраженные вторые и четвертые слои и называется гранулярной.

Зоны сенсорной коры, раздражение или разрушение которых вызывает четкие и постоянные изменения чувствительности организма, называются первичными сенсорными областями. Они состоят преимущественно из мономодальных нейронов и формируют ощущения одного качества. В первичных сенсорных зонах обычно имеется четкое пространственное представительство частей тела, их рецепторных полей. Вокруг первичных сенсорных зон находятся менее локализованные вторичные сенсорные зоны, полимодальные нейроны которых отвечают на действие нескольких раздражителей.

Важнейшей сенсорной областью является теменная кора постцентральной извилины и соответствующая ей часть парацентральной дольки на медиальной поверхности полушарий, которую обозначают как первичная соматосенсорная область. Здесь имеется проекция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептивной чувствительности и чувствительности опорно-двигательного аппарата от мышечных, суставных и сухожильных рецепторов. Проекция участков тела в этой области характеризуется тем, что проекция головы и верхних отделов туловища расположена в нижнелатеральных участках постцентральной извилины, проекция нижней половины туловища и ног - в верхнемедиальных зонах извилины, проекция нижней части голени и стоп - в коре парацентральной дольки на медиальной поверхности полушарий. При этом проекция наиболее чувствительных участков (язык, губы, гортань, пальцы рук) имеет относительно большие зоны по сравнению с другими частями тела. Предполагается, что в зоне тактильной чувствительности языка расположена и проекция вкусовой чувствительности.

Вторичная соматосенсорная область меньших размеров расположена на верхней стенке боковой борозды, на границе ее пересечения с центральной бороздой. Функции вторичной соматосенсорной области изучены плохо. Известно, что локализация поверхности тела в ней менее четкая, импульсация сюда поступает как от противоположной стороны тела, так и от «своей» стороны, предполагают ее участие в сенсорной и моторной координации двух сторон тела.

Другой первичной сенсорной зоной является слуховая кора, которая расположена в глубине латеральной борозды. В этой зоне в ответ на раздражение слуховых рецепторов кортиева органа формируются звуковые ощущения, изменяющиеся по громкости, тону и другим качествам. Здесь имеет четкая топическая проекция: в разных участках коры представлены различные участки кортиева органа. К проекционной коре височной доли относится также центр вестибулярного анализатора в верхней и средней височных извилинах. Обработанная сенсорная информация используется для формирования «схемы тела» и регуляции функций мозжечка (височно-мостомозжечковый путь).

Еще одна первичная проекционная область новой коры расположена в затылочной коре - первичная зрительная область. Здесь имеет топическое представительство рецепторов сетчатки, и каждой точке сетчатки соответствует свой участок зрительной коры, при этом зона желтого пятна имеет большую зону представительства. В связи с неполным перекрестом зрительных путей в зрительную область каждого полушария проецируются одноименные половины сетчатки. Наличие в каждом полушарии проекции сетчатки обоих глаз является основой бинокулярного зрения.

Раздражение коры 17-го поля приводит к возникновению световых ощущений. Около поля 17 расположена кора вторичной зрительной области. Нейроны этих зон полимодальны и отвечают не только на световые, но и на тактильные, слуховые раздражители. В данной зрительной области происходит синтез различных видов чувствительности и возникают более сложные зрительные образы и их опознавание. Раздражение этих полей вызывает зрительные галлюцинации, навязчивые ощущения, движения глаз.

Основная часть информации об окружающей среде и внутренней среда организма, поступившая в сенсорную кору, передается для дальнейшей ее обработки в ассоциативную кору.

Ассоциативные области коры включают участки новой коры, расположенные рядом с сенсорными и двигательными зонами, но не выполняющие непосредственно чувствительных и двигательных функций. Границы этих областей обозначены не достаточно четко, неопределенность преимущественно связана со вторичными проекционными зонами, функциональные свойства которых являются переходными между свойствами первичных проекционных и ассоциативных зон. У человека ассоциативная кора составляет 70% неокортекса.

Основной физиологической особенностью нейронов ассоциативной коры является полимодальность: они отвечают на несколько раздражителей с почти одинаковой силой. Полимодальность (полисенсорность) нейронов ассоциативной коры создается за счет, во-первых, наличия кортикокортикальных связей с разными проекционными зонами, во-вторых, за счет главного афферентного входа от ассоциативных ядер таламуса, в которых уже произошла сложная обработка информации от различных чувствительных путей. В результате этого ассоциативная кора представляет собой мощный аппарат конвергенции различных сенсорных возбуждений, позволяющих произвести сложную обработку информации о внешней и внутренней среде организма и использовать ее для осуществления высших психофизиологических функций. В ассоциативной коре выделяют три ассоциативные системы мозга: таламотеменную, таламолобную и таламовисочную.

Таламотеменная система представлена ассоциативными зонами теменной коры, получающими основные афферентные входы от задней группы ассоциативных ядер таламуса. Теменная ассоциативная кора имеет эфферентные выходы на ядра таламуса и гипоталамуса, моторную кору и ядра экстрапирамидной системы.

Основными функциями таламотеменной системы являются гнозис, формирование «схемы тела» и праксис.

Под гнозисом понимают функцию различных видов узнавания: формы, величины, значения предметов, понимание речи, познание процессов, закономерностей. К гностическим функциям относится оценка пространственных отношений. В теменной коре выделяют центр стереогнозиса, расположенный сзади от средних отделов постцентральной извилины (поля 7, 40, частично 39) и обеспечивающий способность узнавания предметов на ощупь. Вариантом гностической функции является формирование в сознании трехмерной модели тела, центр которой расположен в поле 7 теменной коры. Под праксисом понимают целенаправленное действие, центр его находится в надкраевой извилине (поля 39 и 40 доминантного полушария). Этот центр обеспечивает хранение и реализацию программы двигательных автоматизированных актов.

Таламолобная система представлена ассоциативными зонами лобной коры, имеющими основной афферентный вход от ассоциативного медиодорсального ядра таламуса. Главной функцией лобной ассоциативной коры является формирование программ целенаправленного поведения, особенно в новой для человека обстановке. Реализация этой общей функции основывается на других функциях таламолобной системы: 1) формирование доминирующей мотивации обеспечивающей направление поведения человека. Эта функция основана на тесных двусторонних связях лоьной коры с лимбической системой и ролью последней в регуляции высших эмоций человека, связанных с его социальной деятельностью и творчеством; 2) обеспечение вероятностного прогнозирования, что выражается изменением поведения в ответ на изменения обстановки окружающей среды и доминирующей мотивации; 3) самоконтроль действий путем постоянного сравнения результата действия с исходными намерениями, что связано с созданием аппарата предвидения (акцептора результата действия).

При повреждении префронтальной лобной коры, где пересекаются связи между лобной долей и таламусом, человек становится грубым, нетактичным, ненадежным, у него появляется тенденция к повторению каких-либо двигательных актов, хотя обстановка уже изменилась и надо выполнять другие действия.

Таламовисочная система изучена не достаточно. Но если говорить о височной коре, то надо отметить, что некоторые ассоциативные центры, например стереогнозиса и праксиса, включают в себя и участки височной коры. В височной коре расположен слуховой центр речи, находящийся в задних отделах верхней височной извилины. Этот центр обеспечивает речевой гнозис - распознавание и хранение устной речи, как собственной, так и чужой. В средней части верхней височной извилины находится центр распознавания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей находится центр чтения письменной речи, обеспечивающий распознавание и хранение образов письменной речи.

В двигательной коре выделяют первичную и вторичную моторные области.

В первичной моторной коре расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топографическая проекция мышц тела. При этом проекции мышц нижних конечностей и туловища расположены в верхних участках прецентральной извилины и занимают сравнительно небольшую площадь, а проекция мышц верхних конечностей, лица и языка расположены в нижних участках извилины и занимают большую. Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Двигательные реакции на раздражение первичной моторной коры осуществляются с минимальным порогом (высокая возбудимость), и представлены элементарными сокращениями мышц противоположной стороны тела (для мышц головы сокращение может быть билатеральным). При поражении этой области коры утрачивается способность к тонким координированным движениям рук, особенно пальцев.

Вторичная двигательная кора расположена на латеральной поверхности полушарий, впереди прецентральной извилины. Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Кора поля 6 получает основную часть эфферентной импульсации базальных ядер и мозжечка и участвует в перекодировании информации о программе сложных движений. Раздражение коры поля 6 вызывает более сложные координированные движения, например, поворот головы, глаз и туловища в противоположную сторону, содружественные сокращения мышц-сгибателей или мышц-разгибателей на противоположной стороне. В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: центр письменной речи в заднем отделе средней лобной извилины, центр моторной течи Брока в заднем отделе нижней лобной извилины, обеспечивающий речевой праксис, а также музыкальный моторный центр, определяющий тональность речи, способность петь.

В моторной коре лучше, чем в других зонах коры, выражен слой, содержащий гигантские пирамидные клетки Беца. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ядер и мозжечка. Основной эфферентный выход двигательной коры на стволовые и спинальные моторные центры формируют пирамидные клетки пятого слоя. Пирамидные и сопряженные с ними вставочные нейроны расположены вертикально по отношению к поверхности коры и образуют нейронные двигательные колонки. Пирамидные нейроны двигательной колонки могут возбуждать или тормозить мотонейроны стволовых и спинальных центров. Соседние колонки в функциональном плане перекрываются, а пирамидные нейроны, регулирующие деятельность одной мышцы, расположены обычно не в одной, а в нескольких колонках.

Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути, которые начинаются от гигантских пирамидных клеток Беца и менее крупных пирамидных клеток пятого слоя коры прецентральной извилины (60% волокон), премоторной коры (20% волокон) и постцентральной извилины (20% волокон). Крупные пирамидные клетки имеют быстропроводящие аксоны и фоновую импульсную активность около 5 Гц, которая при движении увеличивается до 20-30 Гц. Эти клетки иннервируют крупные (высокопороговые) ?-мотонейроны в двигательных центрах ствола и спинного мозга, регулирующих физические движения. От мелких пирамидных клеток отходят тонкие медленнопроводящие миелиновые аксоны. Эти клетки имеют фоновую активность около 15 Гц, которая во время движения увеличивается или уменьшается. Они иннервируют мелкие (низкопороговые) ?-мотонейроны в стволовых и спинальных двигательных центрах, регулирующие тонус мышц.

Пирамидные пути состоят из 1 млн волокон кортикоспинального пути, которые начинаются от коры верхней и средней трети прецентральной извилины, и 20 млн волокон кортикобульбарного пути, который начинается от коры нижней трети прецентральной извилины.

Волокна пирамидного пути оканчиваются на альфа-мотонейронах двигательных ядер третьего - седьмого и девятого - двенадцатого черепных нервов (кортикобульбарный путь) или на спинальных двигательных центрах (кортикоспинальный путь).

Через двигательную кору и пирамидные пути осуществляются произвольные простые движения и сложные целенаправленные двигательные программы, например, профессиональные навыки, формирование которых начинается в базальных ганглиях и мозжечке и заканчивается во вторичной моторной коре.

Большинство волокон пирамидных путей осуществляют перекрест, однако небольшая часть волокон остается неперекрещенными, что способствует компенсации нарушенных функций движения при односторонних поражениях. Через пирамидные пути осуществляет свои функции и премоторная кора: двигательные навыки письма, поворот головы, глаз и туловища в противоположную сторону, а также речь. В регуляции письма и особенно устной речи имеется выраженная асимметрия больших полушарий мозга: у 95% правшей и 70% левшей устная речь контролируется левым полушарием.

К корковым экстрапирамидным путям относят кортикорубральные и кортикоретикулярные пути, начинающиеся приблизительно от тех зон, которые дают начало пирамидным путям. Волокна кортикорубрального пути оканчиваются на нейронах красных ядер среднего мозга, от которых далее идут руброспинальные пути.

Волокна кортикоретикулярных путей оканчиваются на нейронах медиальных ядер ретикулярной формации моста (от них идут медиальные ретикулоспинальные пути) и на нейронах ретикулярных гигантоклеточных ядер продолговатого мозга, от которых начинаются латеральные ретикулоспинальные пути.

Через эти пути осуществляется регуляция тонуса и позы, которые обеспечивают точные целенаправленные движения. Корковые экстрапирамидные пути являются компонентом экстрапирамидной системы головного мозга, к которой относятся мозжечок, базальные ганглии, моторные центры ствола. Экстрапирамидная система осуществляет регуляцию тонуса, позы равновесия, выполнение заученных двигательных актов, таких как ходьба, бег, речь, письмо. Поскольку кортикопирамидные пути отдают свои многочисленные коллатерали структурам экстрапирамидной системе, то обе системы работают в функциональном единстве.

Оценивая в общем плане роль различных структур головного и спинного мозга в регуляции сложных направленных движений, можно отметить, что побуждение (мотивация) к движению создается в лимбической системе, замысел движения - в ассоциативной коре больших полушарий, программы движений - в базальных ганглиях, мозжечке и премоторной коре, а выполнение сложных движений происходит через двигательную кору, моторные центры ствола и спинного мозга.

Межполушарные взаимоотношения у человека проявляются в двух формах - функциональной асимметрии больших полушарий и совместной их деятельности.

Межполушарная асимметрия как одна из важных особенностей функционирования высших отделов мозга в основном определяется двумя моментами: 1) асимметричной локализацией нервного аппарата второй сигнальной системы и 2) доминированием правой руки как мощного средства адаптивного поведения человека. Этим и объясняется, что первые представления о функциональной роли межполушарной асимметрии возникли лишь тогда, когда удалось установить локализацию нервных центров речи (моторного — центра Брока и сенсорного — центра Вернике в левом полушарии).

Перекрестная проекция видов сенсорной чувствительности и нисходящих пирамидных путей — регуляторов моторной сферы организма — в сочетании с левосторонней локализацией центра устной и письменной речи определяет доминирующую роль левого полушария в поведении человека, управляемого корой больших полушарий.

Полученные экспериментальные данные подтверждают представление о доминирующей роли левого полушария мозга в реализации функций второй сигнальной системы, в мыслительных операциях, в творческой деятельности с преобладанием форм абстрактного мышления. В общем виде можно считать, что люди с левополушарным доминированием относятся к мыслительному типу, а с правополушарным доминированием — к художественному.

Функциональная асимметрия полушарий является важнейшим психофизиологическим свойством головного мозга человека. Выделяют психическую, сенсорную и моторную межполушарную функциональную асимметрии мозга.

При исследовании психофизиологических функций было показано, что в речи словесный информационный канал контролируется левым полушарием, а несловесный канал (голос, интонация) - правым.

Абстрактное мышление и сознание связаны, преимущественно, с левым полушарием. При выработке условного рефлекса в начальной фазе доминирует правое полушарие, а во время упрочения рефлекса - левое.

Правое полушарие осуществляет обработку информации одновременно, синтетически, по принципу дедукции, лучше воспринимаются пространственные и относительные признаки предмета. Левое полушарие производит обработку информации последовательно, аналитически, по принципу индукции, лучше воспринимает абсолютные признаки предмета и временные отношения.

В эмоциональной сфере правое полушарие обуславливает преимущественно отрицательные эмоции, контролирует проявления сильных эмоций, в целом оно более «эмоционально». Левое полушарие обуславливает в основном положительные эмоции, контролирует проявление более слабых эмоций.

В сенсорной сфере роль правого и левого полушарий лучше всего проявляется при зрительном восприятии. Правое полушарие воспринимает зрительный образ целостно, сразу во всех подробностях, легче решает задачу различения предметов и опознания визуальных образов предметов, которое трудно описать словами, создает предпосылки конкретно-чувственного мышления. Левое полушарие оценивает зрительный образ расчленено, аналитически, при этом каждый признак анализируется раздельно. Легче опознаются знакомые предметы и решаются задачи сходства предметов, зрительные образы лишены конкретных подробностей и имеют высокую степень абстракции; создаются предпосылки логического мышления.

Моторная асимметрия выражается, прежде всего, в право-леворукости, которая контролируется моторной корой противоположного полушария. Асимметрия других групп мышц имеет индивидуальный, а не видовой характер.

Парность в деятельности больших полушарий обеспечивается наличием комиссуральной системы (мозолистого тела, передней и задней, гиппокампальной и хабенулярной комиссур, межталамического сращения), которые анатомически соединяют два полушария головного мозга. Иначе говоря, оба полушария связаны не только горизонтальными связями, но и вертикальными.

Основные факты, полученные с помощью электрофизиологических методик, показали, что возбуждение из участка раздражения одного полушария передается через комиссуральную систему не только в симметричный участок другого полушария, но и в несимметричные участки коры. Исследование метода условных рефлексов показало, в процессе выработки рефлекса происходит «перенос» временной связи в другое полушарие. Элементарные же формы взаимодействия двух полушарий могут осуществляться через четверохолмие и ретикулярную формацию ствола.

У человека, как и у многих животных, большинство органов парные: две руки, две ноги, два глаза, два уха, две почки, два полушария мозга. Парность органов не означает их одинаковое функционирование. Мы знаем, какая рука у нас ведущая - выполняет наиболее сложные, тонкие операции. У большинства людей - это правая рука. Мы едим, шьем, пишем, рисуем правой рукой. Среди людей - правшей, использующих для точных действий правую руку, 90%, тогда как левши составляют в среднем 10%.

Левши всех рас и культур в прошлом и настоящем находились в меньшинстве среди праворукого окружения.

При изучении вопроса о происхождении левшества выделились три основных направления: «генетическое», «культурное» и «патологическое».

В настоящее время наибольшее распространение получили две генетические модели. Согласно одной асимметрия мозга определяется присутствием одного гена, который был назван ею фактором «правого сдвига». Если данный фактор имеется у индивидуума, последний предрасположен быть правшой. Если фактор отсутствует, человек может быть либо левшой, либо правшой в зависимости от случайных обстоятельств. При этом большое значение придается повреждениям мозга в пренатальном и раннем постнатальном периоде, которые могут повлиять на фенотипическую реализацию фактора «правого сдвига».

Более сложная модель была предложена Леви и Нагилаки (1972). Эти ученые предполагают, что рукость является функцией двух генов. Один ген с двумя аллелями определяет полушарие, которое будет контролировать речь и ведущую руку.

На вероятность не генетической, а цитоплазматической закодированности асимметрии указывает Морган (1978), выдвигая концепцию, согласно которой и мозговая латерализация, и мануальное предпочтение рассматриваются в широком общебиологическом аспекте. Предполагается, что развитие мозга находится под влиянием лево-правого градиента, а это приводит к более раннему и быстрому созреванию в онтогенезе левого полушария, которое при этом оказывает тормозящее влияние на правое - в результате возникает доминирование левого полушария по речи и праворукость.

С «генетическим» направлением непосредственно сочетаются исследования, связанные с выявлением анатомических, физиологических и морфологических стигматов, свойственных правшам и левшам. Показано, что у правшей сильвиева борозда справа расположена выше левой, в то время, как у 71% левшей правая и левая борозды примерно симметричны.

У правшей отмечается больший диаметр внутренней сонной артерии слева и выше давление в ней, чем в правой, а у левшей - обратная картина.

Аналогичная диссоциация выявляется у правшей и левшей при изучении средней мозговой артерии. Гипотеза Гершвинда и Галабурды также предполагает эндокринное влияние на формирование различий в строении мозга мужчин и женщин. Известна теория Превика, согласно которой церебральная латерализация у человека формируется при асимметричном пренатальном развитии системы внутреннего уха и лабиринта.

Существует и генетико-культурная гипотеза функциональной асимметрии. Английский ученый из Кембриджа Лэлэнд и его коллеги считают, что левшество является в равной степени генетически и культурологически обусловленным.

Альтернативными «генетическим» представляются гипотезы возникновения межполушарной асимметрии, базирующиеся на признании детерминирующей роли культурных условий в формировании рукости. «Культурно-социальные» концепции рассматривают правшество-левшество как следствие социального воспитания, опыта, условий жизни.

Наряду с представленными выше теориями, широко распространены представления о патологическом происхождении левшества. Крайней точки зрения придерживается Бэкан (1973), который утверждает, что любое проявление леворукости есть следствие родовой травмы. По мнению Чуприкова (1975), изменение моторного доминирования является одним из объективных доказательств врожденной энцефалопатии. В подтверждение приводятся факты увеличения левшей среди близнецов, особенности пренатального развития которых предполагают риск внутриутробной гипоксии мозга. В пользу этого подхода говорят и результаты проб Вада, согласно которым повреждение левого полушария на ранних этапах онтогенеза может привести к смене ведущей руки и доминантного по речи полушария.

Изучение вопроса о происхождении латеральности продолжается. Обилие фактов, подчас противоречащих друг другу, показывает, что каждая из теорий функциональной межполушарной асимметрии мозга требует дальнейшего обоснования. Вместе с тем очевидно, что основополагающие принципы вышеперечисленных подходов составляют базу для будущего системного исследования, необходимость которого вытекает из множества проблем и вопросов, оставшихся открытыми.

Кора больших полушарий головного мозга , слой серого вещества толщиной 1-5 мм, покрывающий полушария большого мозга млекопитающих животных и человека. Эта часть головного мозга, развившаяся на поздних этапах эволюции животного мира, играет исключительно важную роль в осуществлении психической, или высшей нервной деятельности, хотя эта деятельность является результатом работы мозга как единого целого. Благодаря двусторонним связям с нижележащими отделами нервной системы, кора может участвовать в регуляции и координации всех функций организма. У человека кора составляет в среднем 44% от объёма всего полушария в целом. Её поверхность достигает 1468-1670 см2.

Строение коры . Характерной особенностью строения коры является ориентированное, горизонтально-вертикальное распределение составляющих её нервных клеток по слоям и колонкам; таким образом, корковая структура отличается пространственно упорядоченным расположением функционирующих единиц и связей между ними. Пространство между телами и отростками нервных клеток коры заполнено нейроглией и сосудистой сетью (капиллярами). Нейроны коры подразделяются на 3 основных типа: пирамидные (80-90% всех клеток коры), звездчатые и веретенообразные. Основные функциональный элемент коры - афферентно-эфферентный (т. е. воспринимающий центростремительные и посылающий центробежные стимулы) длинноаксонный пирамидный нейрон. Звездчатые клетки отличаются слабым развитием дендритов и мощным развитием аксонов, которые не выходят за пределы поперечника коры и охватывают своими разветвлениями группы пирамидных клеток. Звездчатые клетки выполняют роль воспринимающих и синхронизирующих элементов, способных координировать (одновременно тормозить или возбуждать) пространственно близкие группы пирамидных нейронов. Корковый нейрон характеризуется сложным субмикроскопическим строением.Различные по топографии участки коры отличаются плотностью расположения клеток, их величиной и другими характеристиками послойной и колончатой структуры. Все эти показатели определяют архитектуру коры, или её цитоархитектонику Наиболее крупные подразделения территории коры - древняя (палеокортекс), старая (архикортекс), новая (неокортекс) и межуточная кора. Поверхность новой коры у человека занимает 95,6%, старой 2,2%, древней 0,6%, межуточной 1,6%.

Если представить себе кору мозга в виде единого покрова (плаща), одевающего поверхность полушарий, то основная центральная часть его составит новая кора, в то время как древняя, старая и межуточная займут место на периферии, т. е. по краям этого плаща. Древняя кора у человека и высших млекопитающих состоит из одного клеточного слоя, нечетко отделённого от нижележащих подкорковых ядер; старая кора полностью отделена от последних и представлена 2-3 слоями; новая кора состоит, как правило, из 6-7 слоев клеток; межуточные формации - переходные структуры между полями старой и новой коры, а также древней и новой коры - из 4-5 слоев клеток. Неокортекс подразделяется на следующие области: прецентральную, постцентральную, височную, нижнетеменную, верхнетеменную, височно-теменно-затылочную, затылочную, островковую и лимбическую. В свою очередь, области подразделяются на подобласти и поля. Основной тип прямых и обратных связей новой коры - вертикальные пучки волокон, приносящие информацию из подкорковых структур к коре и посылающие её от коры в эти же подкорковые образования. Наряду с вертикальными связями имеются внутрикортикальные - горизонтальные - пучки ассоциативных волокон, проходящие на различных уровнях коры и в белом веществе под корой. Горизонтальные пучки наиболее характерны для I и III слоев коры, а в некоторых полях для V слоя.

Горизонтальные пучки обеспечивают обмен информацией как между полями, расположенными на соседних извилинах, так и между отдалёнными участками коры (например, лобной и затылочной).

Функциональные особенности коры обусловливаются упомянутым выше распределением нервных клеток и их связей по слоям и колонкам. На корковые нейроны возможна конвергенция (схождение) импульсов от различных органов чувств. Согласно современным представлениям, подобная конвергенция разнородных возбуждений - нейрофизиологический механизм интегративной деятельности головного мозга, т. е. анализа и синтеза ответной деятельности организма. Существенное значение имеет и то, что нейроны сведены в комплексы, по-видимому, реализующие результаты конвергенции возбуждений на отдельные нейроны. Одна из основных морфо-функциональных единиц коры - комплекс, называемый колонкой клеток, который проходит через все корковые слои и состоит из клеток, расположенных на одном перпендикуляре к поверхности коры. Клетки в колонке тесно связаны между собой и получают общую афферентную веточку из подкорки. Каждая колонка клеток отвечает за восприятие преимущественно одного вида чувствительности. Например, если в корковом конце кожного анализатора одна из колонок реагирует на прикосновение к коже, то другая - на движение конечности в суставе. В зрительном анализаторе функции восприятия зрительных образов также распределены по колонкам. Например, одна из колонок воспринимает движение предмета в горизонтальной плоскости, соседняя - в вертикальной и т. п.

Второй комплекс клеток новой коры - слой - ориентирован в горизонтальной плоскости. Полагают, что мелкоклеточные слои II и IV состоят в основном из воспринимающих элементов и являются «входами» в кору. Крупноклеточный слой V - выход из коры в подкорку, а среднеклеточный слой III - ассоциативный, связывающий между собой различные корковые зоны

Локализация функций в коре характеризуется динамичностью в силу того, что, с одной стороны, имеются строго локализованные и пространственно отграниченные зоны коры, связанные с восприятием информации от определенного органа чувств, а с другой - кора является единым аппаратом, в котором отдельные структуры тесно связаны и в случае необходимости могут взаимозаменяться (т. н. пластичность корковых функций). Кроме того, в каждый данный момент корковые структуры (нейроны, поля, области) могут образовывать согласованно действующие комплексы, состав которых изменяется в зависимости от специфических и неспецифических стимулов, определяющих распределение торможения и возбуждения в коре. Наконец, существует тесная взаимозависимость между функциональным состоянием корковых зон и деятельностью подкорковых структур. Территории коры резко различаются по своим функциям. Большая часть древней коры входит в систему обонятельного анализатора. Старая и межуточная кора, будучи тесно связанными с древней корой как системами связей, так и эволюционно, не имеют прямого отношения к обонянию. Они входят в состав системы, ведающей регуляцией вегетативных реакций и эмоциональных состояний. Новая кора - совокупность конечных звеньев различных воспринимающих (сенсорных) систем (корковых концов анализаторов).

Принято выделять в зоне того или иного анализатора проекционные, или первичные, и вторичные, поля, а также третичные поля, или ассоциативные зоны. Первичные поля получают информацию, опосредованную через наименьшее количество переключений в подкорке (в зрительном бугре, или таламусе, промежуточного мозга). На этих полях как бы спроецирована поверхность периферических рецепторов.В свете современных данных, проекционные зоны нельзя рассматривать как устройства, воспринимающие раздражения «точку в точку». В этих зонах происходит восприятие определенных параметров объектов, т. е. создаются (интегрируются) образы, поскольку данные участки мозга отвечают на определенные изменения объектов, на их форму, ориентацию, скорость движения и т. п.

Корковые структуры играют первостепенную роль в обучении животных и человека. Однако образование некоторых простых условных рефлексов, главным образом с внутренних органов, может быть обеспечено подкорковыми механизмами. Эти рефлексы могут образовываться и на низших уровнях развития, когда ещё нет коры. Сложные условные рефлексы, лежащие в основе целостных актов поведения, требуют сохранности корковых структур и участия не только первичных зон корковых концов анализаторов, но и ассоциативных - третичных зон. Корковые структуры имеют прямое отношение и к механизмам памяти. Электрораздражение отдельных областей коры (например, височной) вызывает у людей сложные картины воспоминаний.

Характерная особенность деятельности коры - её спонтанная электрическая активность, регистрируемая в виде электроэнцефалограммы (ЭЭГ). В целом кора и её нейроны обладают ритмической активностью, которая отражает происходящие в них биохимические и биофизические процессы. Эта активность имеет разнообразную амплитуду и частоту (от 1 до 60 гц) и изменяется под влиянием различных факторов.

Ритмическая активность коры нерегулярна, однако можно по частоте потенциалов выделить несколько разных типов её (альфа-, бета-, дельта- и тета-ритмы). ЭЭГ претерпевает характерные изменения при многих физиологических и патологических состояниях (различных фазах сна, при опухолях, судорожных припадках и т. и.). Ритм, т. е. частота, и амплитуда биоэлектрических потенциалов коры задаются подкорковыми структурами, которые синхронизируют работу групп корковых нейронов, что и создаёт условия для их согласованных разрядов. Этот ритм связан с апикальными (верхушечными) дендритами пирамидных клеток. На ритмическую деятельность коры накладываются влияния, идущие от органов чувств. Так, вспышка света, щелчок или прикосновение к коже вызывают в соответствующих зонах т. н. первичный ответ, состоящий из ряда позитивных волн (отклонение электронного луча на экране осциллографа вниз) и негативной волны (отклонение луча вверх). Эти волны отражают деятельность структур данного участка коры и меняются в её различных слоях.

Филогенез и онтогенез коры . Кора - продукт длительного эволюционного развития, в процессе которого сначала появляется древняя кора, возникающая в связи с развитием обонятельного анализатора у рыб. С выходом животных из воды на сушу начинает интенсивно развиваться т. н. плащевидная, полностью обособленная от подкорки часть коры, которая состоит из старой и новой коры. Становление этих структур в процессе приспособления к сложным и разнообразным условиям наземного существования связано (совершенствованием и взаимодействием различных воспринимающих и двигательных систем. У земноводных кора представлена древней и зачатком старой коры, у пресмыкающихся хорошо развиты древняя и старая кора и появляется зачаток новой коры. Наибольшего развития новая кора достигает у млекопитающих, а среди них у приматов (обезьяны и человек), хоботных (слоны) и китообразных (дельфины, киты). В связи с неравномерностью роста отдельных структур новой коры её поверхность становится складчатой, покрываясь бороздами и извилинами. Совершенствование коры конечного мозга у млекопитающих неразрывно связано с эволюцией всех отделов центральной нервной системы. Этот процесс сопровождается интенсивным ростом прямых и обратных связей, соединяющих корковые и подкорковые структуры. Т. о., на более высоких этапах эволюции функции подкорковых образований начинают контролироваться корковыми структурами. Данное явление получило название кортиколизации функций. В результате кортиколизации ствол мозга образует с корковыми структурами единый комплекс, а повреждение коры на высших этапах эволюции приводит к нарушению жизненно важных функций организма. Наибольшие изменения и увеличение в процессе эволюции новой коры претерпевают ассоциативные зоны, в то время как первичные, сенсорные поля уменьшаются по относительной величине. Разрастание новой коры приводит к вытеснению старой и древней на нижнюю и срединную поверхности мозга.

Кора больших полушарий является высшим отделом центральной нервной системы, который в процессе филогенетического развития появляется позже всего и формируется в ходе индивидуального (онтогенетического) развития позже других отделов мозга. Кора представляет собой слой серого вещества толщиной 2-3 мм, содержащий в среднем около 14 млрд. (от 10 до 18 млрд.) нервных клеток, нервные волокна и межуточную ткань (нейроглию). На поперечном ее срезе по расположению нейрон ов и их связей различают 6 горизонтальных слоев. Благодаря многочисленным извилинам и бороздам площадь поверхности коры достигает 0,2 м2. Непосредственно под корой находится белое вещество, состоящее из нервных волокон, которые передают возбуждение в кору и из нее, а также от одних участков коры другим.
Корковые нейрон ы и их связи. Несмотря на огромное число нейрон ов в коре, известно очень немного их разновидностей. Основными типами их являются пирамидные и звездчатые нейрон ы.
...
В афферентной функции коры и в процессах переключения возбуждения на соседние нейрон ы основная роль принадлежит звездчатым нейрон ам. Они составляют у человека более половины всех клеток коры. Эти клетки имеют короткие ветвящиеся аксон ы, не выходящие за пределы серого вещества коры, и короткие ветвящиеся дендрит ы. Звездчатые нейрон ы участвуют в процессах восприятия раздражении и объединении деятельности различных пирамидных нейрон ов.

Пирамидные нейрон ы осуществляют эфферентную функцию коры и внутрикорковые процессы взаимодействия между удаленными друг от друга нейрон ами. Они делятся на крупные пирамиды, от которых начинаются проекционные, или эфферентные, пути к подкорковым образованиям, и мелкие пирамиды, образующие ассоциативные пути к другим отделам коры. Наиболее крупные пирамидные клетки - гигантские пирамиды Беца - находятся в передней центральной извилине, в так называемой моторной зоне коры. Характерная особенность крупных пирамид - их вертикальная ориентация в толще коры. От тела клетки вертикально вверх к поверхности коры направлен наиболее толстый (верхушечный) дендрит , через который в клетку поступают различные афферентные влияния от других нейрон ов, а вертикально вниз отходит эфферентный отросток - аксон .

Многочисленность контактов (например, только на дендрит ах крупной пирамиды их насчитывают от 2 до 5 тыс.) обеспечивает возможность широкой регуляции деятельности пирамидных клеток со стороны множества других нейрон ов. Это позволяет координировать ответные реакции коры (в первую очередь ее моторную функцию) с разнообразными воздействиями из внешней среды и внутренней среды организма.

Для коры больших полушарий характерно обилие межнейрон ных связей. По мере развития мозга человека после его рождения увеличивается число межцентральных взаимосвязей, особенно интенсивно до 18 лет.

...
Первичные, вторичные и третичные поля коры . Особенности строения и функционального значения отдельных участков коры позволяют выделить отдельные корковые поля.

Различают три основные группы полей в коре: первичные, вторичные и третичные поля.

Первичные поля связаны с органами чувств и органами движения на периферии, они раньше других созревают в онтогенез е, имеют наиболее крупные клетки. Это так называемые ядерные зоны анализаторов, по И. П. Павлову (например, поле болевой, температурной, тактильной и мышечно-суставной чувствительности в задней центральной извилине коры, зрительное поле в затылочной области, слуховое поле в височной области и двигательное поле в передней центральной извилине коры) (рис. 54). Эти поля осуществляют анализ отдельных раздражений, поступающих в кору от соответствующих рецептор ов. При разрушении первичных полей возникают так называемая корковая слепота, корковая глухота и т. п. Рядом расположены вторичные поля, или периферические зоны анализаторов, которые связаны с отдельными органами только через первичные поля. Они служат для обобщения и дальнейшей обработки поступающей информации. Отдельные ощущения синтезируются в них в комплексы, обусловливающие процессы восприятия. При поражении вторичных полей сохраняется способность видеть предметы, слышать звуки, но человек их не узнает, не помнит их значения. Первичные и вторичные поля имеются и у человека, и у животных.

Наиболее далеки от непосредственных связей с периферией третичные поля, или зоны перекрытия анализаторов. Эти поля есть только у человека. Они занимают почти половину территории коры и имеют обширные связи с другими отделами коры и с неспецифическими системами мозга. В этих полях преобладают наиболее мелкие и разнообразные клетки. Основным клеточным элементом здесь являются звездчатые нейрон ы. Третичные поля находятся в задней половине коры - на границах теменных, височных и затылочных ее областей и в передней половине - в передних частях лобных областей. В этих зонах оканчивается наибольшее число нервных волокон, соединяющих левое и правое полушария, поэтому роль их особенно велика в организации согласованной работы обоих полушарий. Третичные поля созревают у человека позже других корковых полей, они осуществляют наиболее сложные функции коры. Здесь происходят процессы высшего анализа и синтеза. В третичных полях на основе синтеза всех афферентных раздражении и с Учетом следов прежних раздражении вырабатываются цели и задачи поведения. Согласно им происходит программирование двигательной деятельности. Развитие третичных полей у человека связывают с функцией речи. Мышлени е (внутренняя речь) возможно только при совместной деятельности анализаторов, объединение информации от которых происходит в третичных полях.

При врожденном недоразвитии третичных полей человек не в состоянии овладеть речью (произносит лишь бессмысл енные звуки) и даже простейшими двигательными навыками (не может одеваться, пользоваться орудиями труда и т. п.).

Воспринимая и оценивая все сигналы из внутренней и внешней среды, кора больших полушарий осуществляет высшую регуляцию всех двигательных и эмоционально-вегетативных реакций.

Функции коры больших полушарии . Кора больших полушарий выполняет наиболее сложные функции организации приспособительного поведения организма во внешней среде. Это прежде всего функция высшего анализа и синтеза всех афферентных раздражении.

Афферентные сигналы поступают в кору по разным каналам, в разные ядерные зоны анализаторов (первичные поля), а затем синтезируются во вторичных и третичных полях, благодаря деятельности которых создается целостное восприятие внешнего мира. Этот синтез лежит в основе сложных психи ческих процессов восприятия, представления, мышлени я. Кора больших полушарий представляет собою орган, тесно связанный с возникновением у человека сознания и регуляцией его общественного поведения. Важной стороной деятельности коры больших полушарий является замыкательная функция - образование новых рефлексов и их систем (условные рефлексы, динамические стереотипы-см. главу XV).

Благодаря необычайно большой продолжительности сохранения в коре следов прежних раздражении (памяти) в ней накапливается огромный объем информации. Это имеет большое значение для сохранения индивидуального опыта, который используется по мере необходимости.
...
Экспериментально показано, что у высших представителей животного мира после полного оперативного удаления коры высшая нервная деятельность резко ухудшается. Они теряют способность тонко приспосабливаться к внешней среде и самостоятельно существовать в ней.

С давних времен между учеными идет спор о местонахождении (локализации) участков коры головного мозга, связанных с различными функциями организма. Были высказаны самые разнообразные и взаимно противоположные точки зрения. Одни считали, что каждой функции нашего организма соответствует строго определенная точка в коре головного мозга, другие отрицали наличие каких бы то ни было центров; любую реакцию они приписывали всей коре, считая ее целиком однозначной в функциональном отношении. Метод условных рефлексов дал возможность И. П. Павлову выяснить ряд неясных вопросов и выработать современную точку зрения.

В коре головного мозга нет строго дробной локализации фун кций. Это следует из экспериментов над животными, когда после разрушения определенных участков коры, например, через несколько дней соседние участки берут на себя функцию разрушенного участка и движения животного восстанавливаются.

Эта способность корковых клеток замещать функцию выпавших участков связана с большой пластичностью коры головного мозга.

Рис. 1. Схема связи отделов коры с. 1 – спинной или; 2 – промежуточный мозг; 3 – кора головного мозга

И. П. Павлов считал, что отдельные области коры имеют разное функциональное значение. Однако между этими областями не существует строго определенных границ. Клетки одной области переходят в соседние области.

В центре этих областей находятся скопления наиболее специализированных клеток-так называемые ядра анализатора, а на периферии-менее специализированные клетки.

В регуляции функций организма принимают участие не строго очерченные какие-то пункты, а многие нервные элементы коры.

Анализ и синтез поступающих импульсов и формирование ответной реакции на них осуществляются значительно большими областями коры.

Рассмотрим некоторые области, имеющие преимущественно то или иное значение. Схематическое расположение местонахождения этих областей приведено на рисунке 1.

Двигательные функции. Корковый отдел двигательного анализатора расположен главным образом в передней центральной извилине, кпереди от центральной (роландовой) борозды. В этой области находятся нервные клетки, с деятельностью которых связаны все движения организма.

Рис. 2. Схема отдельных областей коры головного мозга. 1 – двигательная область; 2 – область кожной и проприорицептивной чувствительности; 3 – зрительная область; 4 – слуховая область; 5 – вкусовая область; 6 – обонятельная область

Отростки крупных нервных клеток, находящихся в глубоких слоях коры, спускаются в продолговатый мозг, где значительная часть их перекрещивается, т. е. переходит на противоположную сторону. После перехода они опускаются по, где перекрещивается остальная часть. В передних рогах спинного мозга они вступают в контакт с находящимися здесь двигательными нервными клетками. Таким образом, возбуждение, возникшее в коре, доходит до двигательных нейронов передних рогов спинного мозга и затем уже по их волокнам поступает к мышцам. Ввиду того что в продолговатом, а частично и в спинном мозгу происходит переход (перекрест) двигательных путей на противоположную сторону, возбуждение, возникшее в левом полушарии головного мозга, поступает в правую половину тела, а в левую половину тела поступают импульсы из правого полушария. Вот почему кровоизлияние, ранение или какое-либо другое поражение одной из сторон больших полушарий влечет за собой нарушение двигательной деятельности мышц противоположной половины тела.

В передней центральной извилине центры, иннервирующие разные мышечные группы, расположены так, что в верхней части двигательной области находятся центры движений нижних конечностей , затем ниже-центр мышц туловища, еще ниже-центр передних конечностей и, наконец, ниже всех-центры мышц головы.

Центры разных мышечных групп представлены неодинаково и занимают неравномерные области.

Функции кожной и чувствительности. Область кожной и проприоцептивной чувствительности у человека находится преимущественно позади центральной (роландовой) борозды в задней центральной извилине.

Локализация этой области у человека может быть установлена методом электрического раздражения коры головного мозга во время операций. Раздражение различных участков коры и одновременньш опрос больного об ощущениях, которые он при этом испытывает, дают возможность составить довольно четкое представление об указанной области. С этой же областью связано так называемое мышечное чувство. Импульсы, возникающие в проприорецепторах-рецепторах, находящихся в суставах, сухожилиях н мышцах, поступают преимущественно в этот отдел коры.

Правое полушарие воспринимает импульсы, идущие по центростремительным волокнам преимущественно с левой, а левое полушарие-преимущественно с правой половины тела. Этим объясняется то, что поражение, допустим, правого полушария вызовет нарушение чувствительности преимущественно левой стороны.

Слуховые функции. Слуховая область расположена в височной доле коры. При удалении височных долей нарушаются сложные звуковые восприятия, так как нарушается возможность анализа и синтеза звуковых восприятий.

Зрительные функции. Зрительная область находится в затылочной доле коры головного мозга. При удалении затылочных долей головного мозга у собаки наступает потеря зрения. Животное не видит, натыкается на предметы. Сохраняются только зрачковые рефлексы У человека нарушение зрительной области одного из полушарий вызывает выпадение половины зрения каждого глаза. Если поражение коснулось зрительной области левого полушария, то выпадают функции носовой части сетчатки одного глаза и височной части сетчатки другого глаза.

Такая особенность поражения зрения связана с тем, что зрительные нервы по пути к коре частично перекрещиваются.

Морфологические основы динамической локализации функций в коре полушарий (центры мозговой коры).

Знание локализации функций в коре головного мозга имеет огромное теоретическое значение, так как дает представление о всех процессов организма и приспособлении его к окружающей среде. Оно имеет и большое практическое значение для диагностики мест поражения в полушариях головного мозга.

Представление о локализации функций в коре головного мозга связано прежде всего с понятием о корковом центре. Еще в 1874 г. киевский анатом В. А, Бец выступил с утверждением, что каждый учасгок коры отличается по строению от других участков мозга. Этим было положено начало учению о разнокачественности коры головного мозга - цитоархитектонике (цитос - клетка, архитектонес - строю). В настоящее время удалось выявить более 50 различных участков коры - корковых цитоархитектонических полей, каждое из которых отличается от других по строению и расположению нервных элементов . Из этих полей, обозначаемых номерами, составлена специальная карта мозговой коры человека.


Рис. 3. Карта цитоархитектонических полей мозга человека (по данным института моэга АМН СССР) Вверху - верхнелатеральная поверхность,внизу- медиальная поверхность. Объяснение в тексте.

По И. П. Павлову, центр - это мозговой конец так называемого анализатора. Анализатор - это нервный механизм, функция которого состоит в том, чтобы разлагать известную сложность внешнего и внутреннего мира на отдельные элементы, т. е. производить анализ. Вместе с тем благодаря широким связям с другими анализаторами здесь происходит и синтезирование анализаторов друг с другом и с разными деятельностями организма.

В настоящее время вся мозговая кора рассматривается как сплошная воспринимающая поверхность. Кора - это совокупность корковых концов анализаторов. С этой точки зрения мы и рассмотрим топографию корковых отделов анализаторов, т. е. главнейшие воспринимающие участки коры полушарий большого мозга.

Прежде всего рассмотрим корковые концы анализаторов, воспринимающих раздражения из внутренней среды организма.

  1. Ядро двигательного анализатора, т. е. анализатора проприоцептивных (кинестетических) раздражении, исходящих от костей, суставов, скелетных мышц и их сухожилий, находится в предцентральной извилине (поля 4 и 6} и lobulus paracentralis. Здесь замыкаются двигательные условные рефлексы. Двигательные параличи, возникающие при поражении двигательной зоны, И. П. Павлов объясняет не повреждением двигательных эфферентных нейронов, а нарушением ядра двигательного анализатора, вследствие чего кора не воспринимает кинестетические раздражения и движения становятся невозможными. Клетки ядра двигательного анализатора заложены в средних слоях коры моторной зоны. В глубоких ее слоях (V, отчасти VI) лежат гигантские пирамидные клетки, представляющие собой эфферентные нейроны, которые И. П. Павлов рассматривает как вставочные нейроны, связывающие кору мозга с подкорковыми ядрами, ядрами черепных нервов и передними рогами спинного мозга, т. е. с двигательными нейронами. В предцентральной извилине тело человека, так же как и в задней, спроецировано вниз головой. При этом правая двигательная область связана с левой половиной тела и наоборот, ибо начинающиеся от нее пирамидные пути перекрещиваются частью в продолговатом, а частью в спинном мозге. Мышцы туловища, гортани, глотки находятся под влиянием обоих полушарий. Кроме предцентральной извилины, проприоцептивные импульсы (мышечно-суставная чувствительность) приходят и в кору постцентральной извилины.
  2. Ядро двигательного анализатора, имеющего-отношение к сочетанному повороту головы и глаз в противоположную сторону, помещается в средней лобной извилине, в премоторной области (поле 8). Такой поворот происходит и при раздражении поля 17, расположенного в затылочной доле в соседстве с ядром. Так как при сокращении мышц глаза в кору мозга (двигательный анализатор, поле 8) всегда поступают не только импульсы от рецепторов этих мышц, но и импульсы от еет-чатки (, поле 77), то различные зрительные раздражения всегда сочетаются с различным положением глаз, устанавливаемым сокращением мышц глазного яблока.
  3. Ядро двигательного анализатора, посредством которого происходит синтез целенаправленных сложных профессиональных, трудовых и спортивных движений, помещается в левой (у правшей) нижней теменной дольке, в gyrus supramarginalis (глубокие слои поля 40). Эти координированные движения, образованные по принципу временных связей и выработанные практикой индивидуальной жизни, осуществляются через связь gyrus supramarginalis с предцентральной извилиной. При поражении поля 40 сохраняется способность к движению вообще, но появляется неспособность совершать целенаправленные движения, действовать - апраксия (праксия - действие, практика).
  4. Ядро анализатора положения и движения головы - статический анализатор (вестибулярный аппарат) в коре мозга точно еще не локализован. Есть основания предполагать, что вестибулярный аппарат проецируется в той же области коры, что и улитка, т. е. в височной доле. Так, при поражении полей 21 и 20, лежащих в области средней и нижней височных извилин, наблюдается атаксия, т. е расстройство равновесия, покачивание тела при стоянии. Этот анализатор, играющий решающую роль в прямохождении человека, имеет особенное значение для работы летчиков в условиях реактивной авиации, так как чувствительность вестибулярного аппарата на самолете значительно понижается.
  5. Ядро анализатора импульсов, идущих от внутренностей и сосудов, находится в нижних отделах передней и задней центральных извилин. Центростремительные импульсы от внутренностей, сосудов, непроизвольной мускулатуры и желез кожи поступают в этот отдел коры, откуда отходят центробежные пути к подкорковым вегетативным центрам.

В премоторной области (поля 6 и 8) совершается объединение вегетативных функций.

В белом веществе полушарий головного мозга, ближе к его осно­ванию, заложено серое вещество образующее подкорковые или базальные ядра: полосатое тело , состоящее из хвоста­того ичечевицеобразного ядер (включает скорлупу, латеральный и медиальный бледный шар), ограды, миндалевидного тела.

Базальные ядразанима­ют центральное место среди структур системы произвольных движений. (двигатель­ных ядер) . При участии базальных ядер осуществляется синергизм всех эле­ментов таких сложных двигательных актов, как ходьба, бег, лазанье; достига­ются плавность движений и установка исходной позы для их осуществления. Базальные ядра координируют тонус и фазовую двигательную активность мышц. Их деятельность связана с вы­полнением медленных движений, таких как медленная ходьба, перешагивание через препятствие, вдевание нитки в иголку.

Базальные ядра участвуют не только в регуля­ции моторной деятельности, но и в анализе афферентных потоков, в регу­ляции ряда вегетативных функций, в осуществлении сложных форм врож­денного поведения, в механизмах кратковременной памяти, а также в регу­ляции цикла сон-бодрствование.

Функции коры больших полушарий

Высшим отделом ЦНС является кора больших полушарий . Разные области коры большого мозга имеют разные поля, определяющиеся по характеру и количеству нейронов, толщине слоев и др. Наличие структурно различных полей предполагает и разное их функциональное предназначение.

С учетом функциональных особенностей поля новой коры подразделяют на первичные , вторичные и третичные или ассоциативные . Первичные и вторичные поля объединяют отделы коры, связанные с функционированием определенных сенсорных систем.

1) Первичные (проекционные) поля получают и обрабатывают информацию от какой-либо сенсорной системы. Здесь осуществляется первичный анализ сенсорной информации в пределах одной модальности (например, для зрительной − цвет, освещенность, форма). Модальность - вид сенсорных ощущений - слуховая, зрительная, обонятельная и т.д.

Первичные сенсорные и моторные поля строго локализованы. Далее представлены некоторые из них.

В коре постцентральной извилины и верхней теменной дольки залегают нервные клетки, образующие ядро проприоцептивной и общей чувствительности (температурной, болевой и осязательной). Ядро двигательного анализатора находится в моторной области коры, к которой относится предцентральная извилина и парацентральная долька полушария. Величина и расположение проекционных зон различных органов в соматочувствительной и двигательной коре зависит от их функционального значения.

В глубине , на обращенной к островку поверхности средней части верхней височной извилины, находится ядро слухового анализатора . В коре средней височной извилины расположено ядро вестибулярного анализатора .

Ядро зрительного анализатора располагается на медиальной поверхности затылочной доли, по обеим сторонам от шпорной борозды.

Центры речи расположены у правшей в левом полушарии, а у левшей - в правом. Ядро двигательного анализатора речи (речепроизношение) располагается в задних отделах нижней лобной извилины (центр Брока ). Ядро слухового анализатора устной речи (речевосприятие) тесно связано с корковым слуховым центром и находится в задних отделах верхней височной извилины, на ее поверхности, обращенной в сторону латеральной борозды (зона Венике ). Вблизи от ядра зрительного анализатора находится ядро зрительного анализатора письменной речи.

Корковые отделы вкусового и обонятельного анализаторов на­ходятся на височной доли, в извилине морского конька и крючке на нижней поверхно­сти височной доли.

2) Вторичные поля расположены над первичными и занимают большую площадь. К ним, помимо чувствительных, поступают волокна от мотивационных и эмоциогенных центров, структур памяти и т.д. Для них характерно опознание сенсорных образов в пределах одной модальности (например, узнавание предмета − гвоздь, шуруп, стержень, дюбель, каблук, гриб, ниппель, игла). Повреждения вторичных полей могут приводить к сенсорным агнозиям (нарушениям процессов узнавания): зрительным, слуховым, обонятельным, вкусовым, а также к сенсорной афазии (нарушения узнавания речи).

3) Третичные или ассоциативные поля занимают более 50% всей поверхности полушарий и являются наиболее молодыми (в эволюционном отношении). Третич­ные поля имеют тесную связь с ассоциативными ядрами таламуса. Ассоциативные зоны обес­печивают контакты между проекционными зонами отдельных ана­лизаторов и интегрируют их деятельность. Они принимают участие в мультисенсорной обработке информации, формировании ответных реакций и осуществлении сложных форм поведения. Помимо этого суще­ствуют другие виды конвергенции: сенсорно-биологическая (проявляется в схождении к от­дельным нейронам коры большого мозга афферентных возбуждений какой-либо сенсорной модальности и мотивационных возбуждений, связанных с различными биологическими состояниями организма (боль, голод и др.), мультибиологическая и эфферентно-афферентная. Главные ассоциативные области это теменно-затылочная (преимущественно функция восприятия) и фронтальная (организация и контроль поведенческих, преимущественно двигательных, реакций). Передний фронтальный отдел являются морфологиче­ским субстратом психической деятельности (сознания, мышле­ния, научения, памяти, эмоций).