Аварии на магистральных трубопроводах примеры. Самые крупные аварии на трубопроводах и газопроводах америки

Ликвидация аварий н а газопроводе начинается , прежде всего, с отключения его поврежденного участка и перекрытия газопровода запорными устройствами (замками, задвижками), расположенными на нем и у газгольдерных станций. При срезах или разрывах труб газопровода низкого давления концы их заделывают деревянными пробками, обмазывают глиной или обматывают листовой резиной, трещины на трубах заваривают или заделывают, устанавливая муфты.
Временно трещины можно заделывать, обматывая трубы плотным бинтом и обмазывая глиной, или обматывая листовой резиной с накладкой хомутов.При воспламенении газа его давление в газопроводе снижают, после чего пламя гасят песком, землей, глиной, набрасывают на газопровод мокрый брезент, а затем засыпают землей и поливают водой.

Для поиска утечки газа из подземных трубопроводов используются служебные собаки. На загазованной местности во избежание взрыва газа запрещается зажигать спички, курить, пользоваться инструментом, вызывающим искрообразование, использовать машины и механизмы с работающими двигателями. Работы на газопроводах, находящихся под давлением, а также расположенных в помещениях, производят только инструментом из цветного металла. Стальной инструмент, чтобы исключить искрообразование, должен быть смазан минерализованной смазкой. Для освещения рабочего места на загазованных участках разрешается применять только аккумуляторные фонари во взрывобезопасном исполнении.

Значительную сложность представляет собой тушение пожара горючих газов , истекающих под давлением. Как правило, подавление горения в этих случаях достигается перекрытием газового потока. Нередко быстро перекрыть поток газа не удается и приходится тушить горящий факел. При пожарах природного газа, истекающего из труб диаметром до 150 мм с расходом 75 м 3 /с пламя имеет высоту до 80 м, диаметр - до 20 м, площадь - до 2000 м 2 . Наиболее эффективно тушение таких пожаров с помощью порошковых огнегасительных составов на основе бикарбонатов калия и натрия. Так, тушение пожара при вертикальном истечении газа с расходом до 75 м 3 /с достигается при подаче состава на основе бикарбоната калия из двух стволов с общим расходом порошка около 10 кг/с. Труднее всего поддается тушению горящий газ, истекающий вниз или в горизонтальном направлении. Удельный расход порошков при тушении такого пожара повышается на 30-50%. Воздействие газожидкостных средств на горящий факел, как правило, не позволяет потушить пожар. Гашение пламени в таком случае достигается лишь при снижении давления горючего газа, поступающего в очаг пожара. Одним из наиболее эффективных способов тушения такого пожара является введение газовых средств тушения в магистраль , по которой поступает горючий газ. В газопроводе просверливают отверстие и через него подают огнегасительный газ (двуокись углерода, инертные газы), расход которого должен в 2-5 раз превышать расход горючего газа

.

Одновременно с тушением пожара на газопроводе необходимо осуществлять его охлаждение . Во избежание разрушений, деформаций и разрывов нельзя допускать попадание воды на оборудование и газопровод, которые по условиям технологического процесса работают при высоких температурах. В таких случаях их защита и охлаждение согласовываются с инженерно-техническим персоналом объекта.

Особой осторожности требуют спасательные работы по ликвидации последствий аварий на продуктоводах, расположенных в замкнутых помещениях , резервуарах, шахтах, колодцах. Испаряющиеся СДЯВ могут достигнуть концентрации, опасной для жизни спасателей. Поэтому работать в таких условиях необходимо только с использованием изолирующего противогаза, спецодежды и спецобуви, подбираемых в зависимости от степени агрессивности транспортируемого продукта и его поражающих факторов. Испаряющийся продукт, соединяясь с воздухом, способен создать взрывоопасную смесь, поэтому, выполняя работы в замкнутых помещениях, нельзя пользоваться открытым огнем и инструментом, способным вызвать искрообразование. Особенностью тушения пожаров в замкнутых и подземных производственных помещениях является то, что пламя может повредить находящиеся в них электрооборудование и электропроводку. Если электрооборудование под напряжением и нет возможности его отключить, то тушение пожара следует производить не водой, а огнетушащими порошками и воздушно-механической пеной. В колодцах пожары эффективно тушатся при заполнении их инертными или другими огнетушащими газами.

Cтраница 1


Аварии трубопроводов в условиях эксплуатации происходят в основном из-за коррозии металла (33 - 50 %), дефектов строительного происхождения (механические повреждения, дефекты кольцевого шва), дефектов заводского шва, нарушение правил эксплуатации, неисправности оборудования и других. Статистические данные по разрушениям газопроводов и нефтепроводов, представленные в табл. 3.2 за десятилетний период (1967 - 1977 годы), свидетельствуют о достаточно большом числе отказов. Ежегодно происходило более 220 разрушений трубопроводов.  

Анализ аварий трубопроводов, проработавших более 20 лет, показывает, что их старение влияет на увеличение числа отказов. Это прежде всего связано со снижением защитных свойств изоляционных покрытий, с накоплением и развитием дефектов в трубах и сварных соединениях, процессами усталости металла. Снижаются пластические и вязкостные свойства металла и сварных соединений.  

Основными-причинами аварий трубопроводов являются дефекты их изготовления и монтажа, гидравлические удары.  

При авариях трубопроводов из-за дефектов тройников (отводов) следует вырезать тройниковый узел целиком и заменить его новым.  

Чаще всего аварии трубопроводов происходят из-за неисправности в месте соединения труб.  

Для предотвращения аварий трубопроводов, проложенных в сложных инженерно-геологических условиях, необходимо установить влияние изменения условий и параметров эксплуатации на прочность и устойчивость трубопровода, а также найти потенциально опасные участки. Отказам и авариям трубопроводов, проложенных в этих условиях, наряду с другими факторами способствует их чрезмерный изгиб, который сопровождается неравномерной осадкой и нестабильным положением системы грунт-труба-жидкость или газ.  

Основными причинами аварий трубопроводов являются дефекты их изготовления и монтажа, гидравлические удары.  

Когда ликвидация аварии трубопровода производится с помощью подводной сварки в кессоне, а для получения качественного шва трубу предварительно нагревают до высоких температур, водолаз-сварщик подвергается двойному воздействию: с одной стороны - высокой температуры газов сварочной дуги, с другой стороны - высокой радиационной температуры, выделяемой трубой. Работа в жаркой, влажной среде кессона, обильное потоотделение, наклоны тела могут вызвать обморочное состояние. Чтобы этого не случилось, нужно обеспечить активное охлаждение работающего, запас воды для питья.  

При ликвидации аварии трубопроводов для сжи - женных газов требуются некоторые дополнительные меры, предосторожности, связанные со спецификой свойств про дуктов.  

Отмечены случаи аварий трубопроводов, вызванных ошибками в выборе труб и арматуры по нормалям, дефектами, допущенными при изготовлении. При монтаже и ремонтных работах необходимо строго контролировать соответствие материалов указанным в проектах, ГОСТах, нормалях и технических условиях. Размещение и способы прокладки газопроводов должны обеспечивать возможность наблюдения за их техническим состоянием. На трубопроводах, транспортирующих сжиженные газы, необходимо устанавливать предохранительные клапаны для сброса газа. На газопроводах, подающих сжиженные газы в емкости, должны быть установлены обратные клапаны между источником давления и запорной арматурой. На всех газопроводах сжиженных газов перед их входом в парк емкостей необходимо установить задвижки, отключающие емкости от внутризаводской сети при аварии или каких-либо неисправностях. На вводах газопроводов горючих газов в производственные цехи и установки должна быть установлена отключающая запорная арматура с дистанционным управлением вне здания.  


Во избежание аварии трубопроводов их прокладывают таким образом, чтобы происходила самокомпенсация тепловых удлинений трубопроводов. Однако достичь-самокомпенсации удается не всегда. В большинстве случаев применяют специальные устройства, называемые компенсаторами.  

Данные о наиболее значительных авариях трубопроводов с полным разрывом стыков показывают, что такие стыки также имели значительный непровар по всей длине шва, достигавший 40 % и даже 60 % толщины стенок, и другие дефекты.  

Тяжесть последствий от аварии трубопровода определяется соотношением размера водоема и количества нефти, попавшего в него. Однако, каковы бы ни были эти соотношения, воздействия такого рода молено считать очень опасными для живой природы.  

По территории Обоянского района проходит магистральный газопровод «Щебелинка-Курск-Брянск».
Наиболее опасным участком является пересечение газопровода с рекой Псел в районе города Обоянь.

Вследствие аварии на газопроводе возможно возникновение следующих поражающих факторов:

  1. воздушная ударная волна;
  2. разлет осколков;
  3. термическое воздействие пожара.

Анализ аварий на магистральных газопроводах показывает, что наибольшую опасность представляют пожары, возникающие после разрыва трубопроводов, которые бывают двух типов: пожар в котловане (колонного типа) и пожар струевого типа в районах торцевых участков разрыва. Первоначальный возможный взрыв газа и разлет осколков (зона поражения несколько десятков метров), учитывая подземную прокладку газопровода и различные удаления объектов по пути трассы, возможные зоны поражения необходимо рассматривать конкретно для каждого объекта.
Возможные радиусы термического поражения приведены в Таблице 18.

Выводы:

При аварии на магистральном газопроводе возможно возгорание зданий и поражение людей при пожаре струевого типа на удалении от места аварии до 1200 м.

Учитывая существенное расширение границ селитебной зоны населенных пунктов после завершения строительства газопроводов часть зданий, сооружений и жилых домов попадают в зону поражающих факторов при аварии на данных магистральных газопроводах.

При возникновении пожара (взрыва газовоздушной смеси) на одном из участков магистрального газопровода радиус вероятной зоны поражения может достигать 0,5 км. Ожидается гибель персонала, получателей сжиженного газа свыше 30 человек и 1-3 единиц техники. Вероятное количество населения, попадающего в зону чрезвычайной ситуации до 1000 чел. (по признаку нарушения условий жизнеобеспечения). В результате аварии потеря газа может составить до 100 тыс. м3, экономический ущерб - до 7 тыс. МРОТ.

V. Аварии на магистральных нефтепроводах

По территории района проходит нефтепровод Мичуринск - Кременчуг "Дружба". Диаметр нефтепровода составляет 720 мм. Протяженность нефтепровода - 270 км. Рабочее давление 41 кг/см2. Производительность 30 тыс.т./сут. Количество нефти, находящейся в нефтепроводе составляет 106845 т, что значительно превышает величину порогового количества, определенного для ЛВЖ (50000 т). Магистральный нефтепровод по гражданской обороне не категорируется.
Виды возможных чрезвычайных ситуаций:

1. Разлив нефтепродуктов в результате разгерметизации линейного участка с последующим возгоранием и возможным взрывом паров нефтепродуктов. Так как нефтепродуктопровод проходит на значительном расстоянии от населенных пунктов и промышленных объектов, поэтому в случае взрыва или пожара они не пострадают. Тяжелые последствия прогнозируются на пересечениях с железными дорогами. В этом случае возможен выход из строя железных дорог, ЛЭП, значительный экономический ущерб.

2. Разлив нефтепродуктов в результате разгерметизации подводного перехода. В этом случае возможно попадание нефтепродуктов в реки (до 1,5 тыс. м3) и ее распространение вниз по течению, что приведет к гибели флоры и фауны, загрязнению прибрежной полосы нефтепродуктами.

Площадь вероятной зоны чрезвычайной ситуации - до 2000 м2 на суше и 48000 м 2 на реке. Вероятное количество населения, попадающее в зону чрезвычайной ситуации до 800 чел. Вероятные социально-экономические последствия при возникновении чрезвычайной ситуации:

  1. экономический ущерб - до 30 тыс. МРОТ;
  2. пострадавшие - до 150 чел.;
  3. нарушение условий жизнедеятельности - до 800 чел.

При распространении разлива нефтепродуктов возможно загрязнение рек и водоемов, вынесение нефтепродуктов на береговую линию и частично нарушение жизнедеятельности населения, проживающего в населенных пунктах, расположенных ниже по течению рек.

Наиболее вероятные причины разливов нефтепродуктов:

Аварии в результате внешней/внутренней коррозии стенок трубопровода;
аварии при воздействии высоких температур при пожаре;
аварии в результате хрупкого разрушения при низких температурах;
аварии на трубопроводах и оборудовании при стихийных бедствиях и террористических актах;
аварии в результате механических повреждений;
аварии в результате брака строительно-монтажных работ;
аварии в результате нарушения технологии перекачки нефтепродуктов.

Основными процессами при разлитии нефтепродуктов могут быть:

Растекание;
испарение;
дисперсия;
растворение;
эмульгирование.

Возможны следующие сценарии возможного поведения нефтепродуктов в районах аварий и разливов на воде в зависимости от сезона года:

1. Безледовый период.

Попадая в реку, ручей или источник, нефтепродукты начинают распространяться, увлекаясь поверхностным течением. При этом образуется вытянутое пятно. В общем случае нефтепродукты будут стремиться скапливаться в участках спокойной воды или в водоворотах на изгибах рек, в извилистых реках, ручьях или в других местах, где скорость течения замедляется. Островки нефтепродуктов могут образоваться в местах, где скапливаются деревья и мусор.
Перемещение и удаление нефтяных пятен от источника аварии будет в первую очередь определяться скоростью течения реки и направлением ветра. Под действием течения нефтепродукты переносится вниз по реке, а ветер сместит пятно к одному из берегов.

2. Ледовый период.

Перемещение пятна нефтепродуктов не зависит от направления ветра. Плавающие нефтепродукты, попав под лед, будут двигаться по подводной части ледяного поля, которая обычно имеет неровную поверхность. Подвижность нефтепродуктов уменьшается. Скорость перемещения пятна нефтепродуктов подо льдом составляет 10-50% от скорости потока в приледном слое воды толщиной 0,1 м, в зависимости от шероховатости нижней поверхности льда. При скоростях движения воды менее 0,1 м/с пятно нефтепродуктов под ледяным покровом может оставаться в неподвижном состоянии.

Распространение нефтепродуктов под ледяным покровом может находиться в виде отдельных капель, сливаться в небольшие пятна или сплошные ковры. При этом толщина этих образований не превышает 5-10 мм.

При нарастании льда неподвижные нефтепродукты вмерзают в лед и в дальнейшем находятся в толще льда в виде вмороженных капель или отдельных линз.

Характер распространения пятна нефтепродуктов зависит от формы русловой части реки, скорости течения и времени, прошедшего с момента начала аварии.

Локализация аварийного нефтезагрязнения воды и прибрежных территорий

Основным способом локализации распространения нефтепродуктов является установка боновых заграждений на локализационных площадках. На места установки боновых заграждений выезжают бригады аварийно-спасательных подразделений в соответствии с разработанным типовым или ситуационным планом. Технические средства - боновые заграждения, нефтесборщики для очистки загрязненных вод. На малых реках допускается создание земляных дамб с водопропускными трубами.

В ледовый период время локализации пятна нефтепродуктов зависит от времени на устройство во льду прорези и майны. Наименьшая допустимая толщина ледяного покрова для выполнения работ может определяться согласно РД153-39.4-114-01 (п. 5.7.39).

За границей боновых заграждений производят контроль наличия нефтепродуктов. В случае обнаружения нефтепродуктов устанавливают дополнительный рубеж боновых заграждений.

В период половодья состояние водного объекта характерно как для ледового, так и для безледового периода. В данном случае мероприятия и объемы работ планируются в зависимости от погодных условий, преобладания признаков ледового (безледового) периода и состояния подъездных путей к рубежам локализации.

Расстановка рубежей локализации производилась с учетом географических особенностей района, а также временем подхода нефтепродуктов к конкретному рубежу локализации. Выбор рубежа локализации определяется руководителем КЧС в зависимости от условий разлива, ситуации и метеорологических условий. При сложных метеорологических условиях рубежи локализации уточняются на основании конкретных гидрометеорологических условий.

Проведение АСНДР будет затруднено высокой температурой в очаге пожара, потребует применения специализированных формирований. Локализация и ликвидация последствий ЧС потребует привлечения значительных финансовых, материальных и людских ресурсов.

Газотранспортная система России отличается беспрецедентной в мировой практике концентрацией энергетических трубопроводных мощностей. Многониточные газопроводы объединены в технические коридоры. От газовых месторождений северных районов Тюменской области действует уникальная газотранспортная система из 20 трубопроводов 1220-1420 мм, к которой вскоре присоединятся еще две магистрали диаметром 1420 мм СРТО-Торжок и СРТО-Черноземье, а потом и газопроводы Ямал-Европа. По техническим коридорам транспортируется до 250 млрд м 3 в год, а на отдельных участках суммарная производительность достигает 340 млрд м 3 в год.

Естественно, такая концентрация создает зону высокого риска. Но, пожалуй, наибольший риск представляют пересечения технических газовых коридоров с другими коридорами или трубопроводами другого назначения. К надежности и безопасности таких узлов предъявляются особые требования. Модель оценки риска на пересечениях должна учитывать возможность проявления при авариях «эффекта домино», выводящего из строя пересекающиеся нитки.

Самый чувствительный экологический урон приносят аварии на трубопроводах. При разрушении газопровода и мгновенном высвобождении энергии газа возникают механические повреждения природного ландшафта и рельефа, нарушение целостности почвенно-растительного покрова. Примерно половина аварий сопровождается возгоранием газа. Поэтому механическое и бризантное воздействие усугубляется тепловой радиацией. Радиус термического влияния определяет зону полного поражения окружающего растительного покрова в очаге отказа, имеется зона трансформации ландшафтов, буферная зона при механических повреждениях.

При авариях на газопроводах диаметром 1420 мм максимальный разброс отдельных кусков металла достигал 480 м, зона термического воздействия - 540 м. Потери газа при разрушении газопровода в среднем составляют около 5 млн м 3 .

На газопроводах в 1985-1986 гг. аварии составляли 0,41-0,44% на 1000 км в год, в последние годы 0,18-0,22. Наибольшее количество аварий связано с коррозией под напряжением. Так, в 2009 году аварии по этой причине составили 27% от всех аварий на газопроводах.

Как показывает практика, более 51 % общей длины трассы магистральных трубопроводов прокладывается по лесным массивам. Это обусловливает значительную вероятность возникновения лесных пожаров в результате аварий на газопроводах. На 25% общей длины магистральные газопроводы пересекают пашни и другие сельскохозяйственные угодья. Из-за аварий при термическом воздействии горящего газа происходит выгорание посевов на площадях в сотни гектаров и спекание грунта на глубину нескольких сантиметров.



При разрушении продуктопровода широкой фракции легких углеводородов (ШФЛУ) в Башкирии территория поражения составила 2 км 2 .

Имели место аварии трубопроводов с каскадным развитием разрушения. В этом случае выходят из строя последовательно элемент за элементом, конструкция за конструкцией трубопровода. Такого ряда очень редкие аварии наносят наибольший экономический и экологический ущерб. Ярким примером каскадного разрушения трубопровода может служить авария на Южно-Солененском газоконденсатном месторождении в ноябре 1989 г.

Основным источником химического загрязнения атмосферы в трубопроводном транспорте являются компрессорные станции. При использовании для привода турбин природного газа, в результате его сгорания в атмосферу выбрасываются вредные вещества, в том числе окислы азота, окись углерода, окислы серы (в случае, если газ содержит соединения серы). Количество выбросов зависит от типа газотурбинных агрегатов. Их количество составляет около 0,5 млн т на 1 млрд м 3 товарной добычи газа. В 1996 г. они составили 2,5 млн т. Ставится задача за счет модернизации камер сгорания и замены устаревших газоперекачивающих агрегатов снизить содержание оксидов до 50 мг/нм 3 .

ВНИИприроды, изучая трансграничный перенос загрязнителей, установил, что оксиды в продуктах сгорания газа, рассеиваемые ветром с избыточной влагой воздуха, могут образовывать кислоты, которые, выпадая на землю, угнетают растительность, воздействуют на некоторые виды ценных рыб. В результате таких процессов, например, вокруг Норильска возник «лунный ландшафт».

Наибольшее шумовое загрязнение атмосферы происходит за счет работы ГПА и строительных механизмов. Уровни шума на КС значительно превышают действующие санитарные нормы, что создает неблагоприятные условия для обслуживающего персонала и обитания местных диких животных и птиц.



Из-за воздействия шумов животные и птицы вынуждены покидать привычные места ареалов обитания. Известны примеры, когда даже такие приспособленные к жизни в экстремальных условиях виды, как, например, волки, вынуждены откочевывать для вывода потомства на 100-300 км от КС или строящегося объекта.

Метан является парниковым газом и может внести при утечках из газотранспортных систем вклад в глобальное потепление. Один килограмм метана на временном горизонте в 20 лет эквивалентен потенциалу глобального потепления от 21 кг углекислого газа.

Существует расхожее мнение, что не следует заострять внимание на потерях метана в системах газовой промышленности, коль скоро безгранично много его отдают в атмосферу болота, угольные шахты. Из последних в России поступает в атмосферу более 12 млрд м 3 метана в год. Вероятно, значительно больше из болот. И все же, необходимо оценить влияние на климат утечек метана, в том числе из газотранспортных систем при авариях, через свищи и трещины, неплотность арматуры, сбросах при ремонте и переиспытаниях.

В среднем в расчете на один год учтенные потери газа от утечек через свищи и другие повреждения газопроводов как минимум в 1,5 раза выше, чем при аварийном разрыве труб.

Данные РАО «Газпром» подтверждают потери газа при средней дальности транспортировки 2500 км в 1,0% от общего объема перекачки.

Таким образом, газоплотность трубопроводных систем и при сдаче объектов, и еще больше в период эксплуатации является важнейшим фактором экологической дисциплины.

Наиболее тяжелые экологические последствия вызывают аварийные ситуации на нефтепроводах, хотя разрушающий эффект на них значительно меньший, чем на газопроводах. В этом случае доминирующую роль играет выход большого количества нефти при аварийном разливе. Физико-химическое воздействие продукта на почву и воду часто приводит к трудновосстанавливаемому или практически невосстанавливаемому режиму естественного самоочищения.

Разрушение трубопроводов по своему характеру вызывает техногенное воздействие, затрагивающее биохимические процессы, происходящие в атмосфере, в почве и водоемах. В период аварийных ситуаций концентрация нефти и нефтепродуктов в воде достигает 200-300 мг/л. Загрязнение рек и водоемов отрицательно сказывается на рыбных запасах регионов.

На нефтепроводе Харьяга-Усинск в Коминефть, или, точнее, на промысловом коллекторе длиной 148 км, начиная с 1994 года имели место разрушения с крупными потерями нефти, в основном по причине внутренней коррозии. О потерях при этих авариях до сих пор еще спорят. Истинные размеры разлива нефти оказались в «вилке» между завышенными оценками западных экспертов и мнением российских специалистов. Но и у последних очень разные результаты подсчетов: от 14 до 103 тыс. т. Словом здесь перемешалась политика, бизнес, техника и экология.

Так или иначе, это было большой экологической бедой с загрязнением значительной территории, попаданием нефти в реки Уса и Кольва.

Напомню, что такие аварии дорого стоят. Коминефть для ликвидации последствий разлива нефти получила кредит в 124 млн долларов. Разлив нефти при катастрофе с танкером Эксон Вольдерс обошелся компании «Эксон» более миллиарда долларов.

О масштабах потери нефти из коллектора Вазой-Уса можно судить по данным Коми-нефть о добыче 49 тыс.т нефти из шлама, образовавшегося в результате утечек. Предполагается добыть еще 40 тыс. т. Утечки нефти из трубопроводов на промплощадках в отдельных случаях приобретали катастрофический характер. Так, на территории Пермьнефтеоргсинтеза, Новокуйбышевского и Ангарского нефтеперерабатывающих заводов в результате потерь нефти и нефтепродуктов из трубопроводов и разлива при аварийных ситуациях образовались техногенные залежи, объем которых достигает 900 тыс.т нефтепродуктов. Из одной из них добывается 40-60 т бензина марки 50 в день.

Проведение выборочного ремонта на нефтепроводах по результатам внутритрубной диагностики позволило за период с 1993 г. по 1998 г. уменьшить количество аварий с 0,25 до 0,06 на 1000 км. Конечно, это очень обнадеживающий результат. Еще в 1977 году АК «Транснефть» предстояло вырезать 47 тысяч дефектов на магистральных нефтепроводах, в том числе и строительного происхождения.

Многие ремонты связаны со сливом нефти в амбары, т.е. связаны с нарушением экологии. Однако значительно большие потери нефти через свищи, трещины, неплотности арматуры, сбросы при ремонтах. По данным Европейской организации нефтяных компаний «Конкау» с 1971 по 1995 г. количество разливов (утечек) нефти на 1000 км уменьшилось с 1,4 до 0,4. Как видно, частота отказов (утечек) для хорошо обслуживаемых европейских нефтепроводов значительно большая, чем показатель аварий на российских нефтепроводах, но она и должна сопоставляться с зафиксированными утечками, а не с авариями. По утверждению экологов в условиях острого топливно-энергетического кризиса ежегодно теряется с учетом нефтяных газов в пересчете на нефтяной эквивалент примерно 16 млн т нефти.

К сожалению, до сих пор проектирование трубопроводных систем ведется без предварительной оценки и анализа риска их эксплуатации, т.е. уровня потенциальной опасности для окружающей среды. Задача теории риска - не только выявлять «слабые» звенья технологической цепи, но и прогнозировать развитие событий в случае возникновения аварий. Иначе говоря, речь идет о построении достоверных «сценариев» (т.е. логических схем) развития аварий, а также математическом описании и программном обеспечении сопутствующих физических процессов. Вся эта методология разработана ассоциацией «Высоконадежный трубопроводный транспорт», ВНИИГазом, Российским государственным университетом нефти и газа им. И. М. Губкина.

Серьезную опасность для трубопроводов представляют оползневые процессы, особенно часто наблюдаемые на береговых участках подводных переходов. Перемещение грунта, особенно если оно идет под углом к оси трубопровода, вызывает оползневое давление - пассивное давление в пределах высоты трубы. Следствием этого является изгиб трубопровода в плане, повреждение изоляции и при достижении предельных деформаций разрушение. Так на 9-ти ниточном переходе газопроводов через р. Каму, несмотря на то что крутой оползневый правый берег был существенно уположен в коридоре 600 м (крутизна склона составила 9-10°), в 1990 г. произошел разрыв трубопровода. В результате взрыва образовалась воронка диаметром 40 м. Выполненные дополнительные противооползневые мероприятия оказались недостаточными, и в 1995 г. в результате оползневой деформации произошел разрыв другой нитки газопровода.

По этому переходу Гипроречтранс сделал контрольные расчеты по программе Р изт и подтвердил его неблагополучие. Эта программа оказалась надежным средством оценки оползневой опасности. Ею следует пользоваться при проектировании и мониторинге, когда требуется оценить устойчивость склона, расположение, глубину и протяженность массива грунта, вовлекаемого в оползневой процесс, эффективность мероприятий по инженерной защите склона, выявить наиболее неблагополучные с точки зрения возможных деформаций участки трубопровода.

Оползневые участки - частое явление по трассам трубопроводов. Так, газопровод «Голубой поток» на протяженном участке пересечет оползневый район. Для снижения риска возникновения аварийных ситуаций, связанных с оползневыми процессами, необходимо ускорить выпуск обновленной нормативно-технической документации, регламентирующей современные правила проектирования и расчета сооружений на оползневых склонах.

Для трубопроводов окружающий мир - это грунтовый массив, это земля, живущая по своим законам, в том числе и по законам геодинамики. Но если доказано, что «тектонические стрессы», зарождающиеся в глубинах недр, находят отражение даже в атмосфере, трассируя «метеопятна», то нельзя пренебрегать возможностью влияния этих явлений на трубопроводы, как бы вросшие в земную поверхность.

Научно-исследовательский институт горной геомеханики и маркшейдерского дела попытался связать аварийные ситуации на трубопроводах с сейсмическими явлениями. Изучив природу 1021 отказа, Институт пришел к выводу что практически все разрушения на трубопроводах большой протяженности произошли в зонах возможного влияния тектонических разломов. Так интервалы времени между авариями подчинялись определенной периодичности, совпадающей с периодами сейсмической активности, установленной по материалам Таштагольской сейсмостанции.

Для более глубокого изучения и предотвращения аварий Институт предлагает провести геодинамическое районирование земной коры вдоль трасс действующих, строящихся и перспективных трубопроводов.

Отдельные районы Восточной Сибири, Прибайкалья и Дальнего Востока, где намечается большая программа строительства трубопроводов, сейсмически опасны. Здесь возможны землетрясения 6-10 баллов по шкале МЗК-64. Появление повреждений на трубопроводах обычно наблюдается при интенсивности около 7 баллов по шкале МЗК-64. Разрушения на старых поврежденных коррозией трубопроводах можно ожидать и при меньших по интенсивности сейсмических воздействиях.

Серьезным источником загрязнения окружающей среды являются процедуры очистки полости и испытания трубопроводовперед сдачей в эксплуатацию.

В зависимости от района строительства, сезонности работ, особенностей технологических операций сооружения газопровода его внутренняя полость может быть загрязнена грунтом, продуктами коррозии, сварочным гратом и огарками, водой, снегом, льдом и, наконец, случайно попавшими предметами.

Как показала практика, масса загрязнений в расчете на метр длины очищаемого газопровода диаметром 1420 мм составляет до 0,6 кг, а в отдельных случаях это количество увеличивается в 2-3 раза. Только продукты коррозии составляют 20 г/м 3 объема полости. При продувке участка в 30 км из такого трубопровода выносится до 50 т загрязнений, в том числе до полтонны продуктов коррозии. Выброс такого количества загрязнений через открытый конец газопровода приводит к загрязнению площади до 1000 м в длину и до 300 м в ширину.

При промывке газопроводов диаметром 1420 мм на участке протяженностью 30 км объем загрязненной воды составляет 55 тыс. м 3 . Сброс такого количества воды на рельеф чреват загрязнением и засолением грунта, размывом поверхности и растеплением вечномерзлых грунтов.

Такой неорганизованный сброс запрещен. Вода после промывки направляется в отстойники и после осветления опускается в водоемы. Однако в случае разрушения трубопровода при испытании неизбежен сброс большого объема воды в незапрограммированном месте с развитием эрозионных процессов.

Большой урон окружающей среде наносят сооружение и эксплуатация речных переходов. При строительстве подводных траншей загрязняется вода, происходит нарушение гидрологических условий территории при рытье траншей трубопроводов на водных переходах, нарушение нерестилищ рыб при дноуглубительных работах, подводного складирования грунта для обратной засыпки траншеи после укладки дюкера, заготовки песчано-гравийных смесей в руслах рек. В водотоки попадает растворенная целлюлоза из захороненных на трассе «древесных остатков», отходами древесины захламляются русла рек.

До сих пор в скальных грунтах выполняются буровзрывные работы. Все это резко отрицательно сказывается на ихтиофауне. При проектировании часто не прогнозируются техногенные деформации русел, особенно тундровых рек. С этим связаны многие негативные последствия, обусловленные русловыми процессами.

К зоне риска должно быть отнесено состояние отдельных речных переходов, главным образом, из-за обнажения в русловой части, ненадежного закрепления берегов в створе перехода, невозможности пропуска по отдельным ниткам внутритрубных диагностических снарядов. К тому же следует отметить, что из общей длины в 3500 км речных переходов 40% проложены более 20 лет назад. В годы трубопроводного «бума» ежегодно только в русловой части рек прокладывалось по 30 км дюкеров с переработкой до 15 млн м 3 донного грунта в год. На размытые (открытые) участки подводных трубопроводов действуют гидродинамические силы. Накопление усталостных повреждений может привести к выбросу максимальных динамических напряжений за допустимый уровень, возможен рост трещин до критических размеров и, как следствие, разрушение подводного трубопровода.

В самой технологии укладки дюкеров в траншею на дне водоемов таится много не предвиденных и осложняющих обстоятельств. Гораздо большая надежность и безопасность переходов может быть достигнута при использовании метода наклонно-направленного бурения. В этом случае трубопровод укладывается в скважину, проведенную в массиве ненарушенного грунта на большой глубине. Очевидно, что в этом случае просадки, размывы и всплытие подводного трубопровода, т.е. изменение его проектного положения, исключаются, не нарушается естественный ландшафт, не угнетается флора и фауна.

Главная задача проектировщиков, строителей и эксплуатационников - построить и эксплуатировать экологически безопасные трубопроводы, КС, НС, резервуарные парки и подземные хранилища, а техногенные воздействия, практически, не сказывались бы на окружающей среде, были бы скомпенсированы до нормального фонового состояния природы. Пока этого достигнуть не удается.

Контрольные вопросы:

1. Аварии на магистральных газопроводах.

2. Основной источник загрязнения атмосферы при транспорте нефти и газа.

3. Потери метана в системах газовой промышленности.

4. Аварии на магистральных нефтепроводах.

5. Оползневые процессы на трассах трубопроводов.


ООО «Городской центр экспертиз». Руководитель департамента экспертизы промышленной безопасности Зинаида Арсентьева ООО «ГЦЭ-Энерго». Руководитель департамента разработки планов ликвидации аварийных ситуаций (ПЛАС)


ООО «Городской центр экспертиз». Руководитель департамента анализа риска

Антон Чугунов
ООО «Городской центр экспертиз». Эксперт департамента экспертизы промышленной безопасности


ООО «Городской центр экспертиз». Эксперт департамента анализа рисков

Аннотация

На сегодняшний день общая протяженность линейной части магистральных трубопроводов в Российской Федерации составляет более 242 тыс. км, из которых: магистральные газопроводы - 166 тыс. км; магистральные нефтепроводы - 52,5 тыс. км; магистральные продуктопроводы - 21,836 тыс. км. В настоящее время в системе магистрального трубопроводного транспорта эксплуатируется более 7000 поднадзорных Ростехнадзору объектов. Специфика эксплуатации трубопроводного транспорта напрямую связана с риском каскадного развития аварий. Поэтому обеспечение безопасности магистральных нефтегазопродуктопроводов имеет огромное значение для энергетической безопасности страны.

Одной из важнейших проблем трубопроводного транспорта является сохранение работоспособного состояния линейной части промысловых и магистральных трубопроводов. Многочисленные обследования показывают, что подземные газопроводы, работающие при нормальных режимах, находятся в удовлетворительном состоянии в течение нескольких десятков лет. Этому способствует то большое внимание, которое уделяется систематическому контролю состояния подземных и надземных газопроводов и своевременная ликвидация появляющихся дефектов.

Известно, что основная часть газотранспортной системы России была построена в 70–80-е годы прошлого века. К настоящему времени износ основных фондов по линейной части магистральных газопроводов составляет более половины, а точнее - 5 7,2 %.

Большая часть магистральных газопроводов имеет под земную конструктивную схему прокладки. На подземные трубопроводы воздействуют коррозионно-активные грунты. Под воздействием коррозионного износа металла уменьшается толщина стенки труб, что в свою очередь может привести к возникновению аварийных ситуаций на МГ.

Безопасность объектов трубопроводного транспорта должна быть максимально высокой для обеспечения надежных бесперебойных поставок углеводородного сырья, а угроза возникновения аварий - минимизирована.

Как правило, появляется в результате коррозионных и механических повреждений, определение места и характера которых связано с рядом трудностей и большими материальными затратами. Совершенно очевидно, что вскрытие газопровода для его непосредственного визуального обследования экономически неоправданно. К тому же обследовать можно только внешнюю поверхность объекта. Поэтому в течение последних лет в нашей стране и за рубежом усилия специализированных научно-и сследовательских и проектных организаций направлены на решение проблемы определения состояния подземных и надземных промысловых, магистральных нефтепродуктопроводов без их вскрытия. Эта проблема связана с большими техническими трудностями, однако при использовании современных методов и средств измерительной техники она успешно решается.

Основные сценарии возможных аварий на газопроводах связаны с разрывом труб на полное сечение и истечением газа в атмосферу в критическом режиме (со скоростью звука) из двух концов газопровода (вверх и вниз по потоку). Протяженность разрыва и вероятность загорания газа имеют определенную связь как с технологическими параметрами трубопровода (его энергетическим потенциалом), так и с характеристиками грунта (плотность, наличие каменистых включений). Для трубопроводов большого диаметра (1200–1400 мм) характерны протяженные разрывы (50–70 м и более) и высокая вероятность загорания газа (0,6–0,7).

Горение газа может протекать в двух основных режимах. Первый из них предстает, как правило, в виде двух независимых (слабо взаимодействующих) настильных струй пламени с ориентацией, близкой к оси газопровода. Это характерно в основном для трубопроводов большого диаметра (режим «струйного» пламени). Ко второму следует отнести результирующий (по расходу газа) столб огня с близкой к вертикальной ориентацией (горение «в котловане»). Данный режим горения газа более характерен для трубопроводов относительно малого диаметра.

Рис. 1. Суммарное распределение причин аварий на магистральных газопроводах по данным Ростехнадзора за 2005–2013 гг.

Количество природного газа, способного участвовать в аварии, зависит от диаметра газопровода, рабочего давления, места разрыва, времени идентификации разрыва, особенностей расстановки и надежности срабатывания линейной арматуры. Согласно статистике, средние потери газа на одну аварию варьируются в диапазоне от двух с половиной до трех миллионов кубометров.


Рис. 2. Распределение аварий на линейной части газопроводов разных диаметров по причинам их возникновения

Для анализа причин и прогнозирования на ближайшую перспективу ожидае мой интенсивности аварий были использованы данные и обобщения, публикуемые в официальных источниках, в том числе в ежегодных отчетах Ростехнадзора. Результаты анализа сведений, содержащихся в ежегодных отчетах о деятельности Федеральной службы по экологическому, технологическому и атомному надзору (http://www.gosnadzor. ru/public/annual_reports/) приведены в табл. 1.


Обобщенные сведения об аварийности и дефектности на газопроводах ОАО «Газпром» за период с 1991 по 2002 г. приведены табл. 2.


Из вышеприведенных данных видно, что наибольшее число аварий на линейной части МГ происходило вследствие наружной и внутренней коррозии (26 %), брака строительно-монтажных работ (25,8 %) и механических повреждений (21 %).

Отдельно можно выделить аварии, происходившие на участках переходов через водные преграды как наиболее сложные в инженерном отношении участки линейной части МГ.


Таблица 3. Изменение интенсивности аварий (кол. аварий / 1000 км в год) на газопроводах РФ различных диаметров, 2000–2010 гг. Таблица 4. Влияние продолжительности эксплуатации на относительные показатели аварийности газопроводов

Необходимо отметить четко прослеживаемую зависимость частоты возникновения аварий на линейной части газопровода от срока его эксплуатации. Данная зависимость представлена в табл. 4. В том числе с разбивкой по различным диаметрам (табл. 5).


Таблица 5. Распределение аварий (в % от общего их числа) для газопроводов разных диаметров в зависимости от срока их эксплуатации

Анализ статистических данных показал, что интенсивность аварий на магистральных трубопроводах имеет выраженный региональный характер, т. е. определяется не только общими показателями научно-т ехнического прогресса в отрасли, но и целым рядом локальных факторов климатического, инженерно-г еологического и геодинамического характера, особенностями сооружения и эксплуатации конкретного участка, развитостью промышленной и транспортной инфраструктуры, общей хозяйственной активностью в регионе. Основную опасность аварийной разгерметизации газопроводов представляют:

  1. Участки газопроводов после компрессорных станций (до 5 км) - вследствие нестационарных динамических нагрузок;
  2. Участки газопроводов на узлах подключения;
  3. Участки подводных переходов;
  4. Участки, проходящие вблизи населенных пунктов и районов с высоким уровнем антропогенной активности (районы строительства, пересечения с автомобильными и железными дорогами).

Важно отметить, что после 1990 года на газопроводах России не было аварий типа лавинного разрушения. Это явилось результатом повышения уровня технических требований к трубам и сварным соединениям. Кроме того, улучшилось качество проектных работ, вырос уровень технического обслуживания газопроводов.

Имеющиеся статистические данные свидетельствуют о том, что соблюдение установленных нормативных расстояний при укладке в одном коридоре различных веток магистральных газопроводов является мерой, достаточной для предотвращения вариантов цепного развития аварий (т.е. происходящих по принципу «домино»).

Проявление аварийности на магистральных газопроводах, представляющих , носит ярко выраженный территориальный характер. Региональное проявление аварийности связано с различием в разных регионах инженерно-геологических особенностей трасс, состоянием сети дорог, общим уровнем промышленного и сельскохозяйственного развития и проч.

Проведенный анализ показал, что скорость коррозии севернее 60-й параллели в естественных почвенных условиях вследствие относительно низких температур в 15–20 раз выше, чем, например, в районах Средней Азии. Вследствие влияния климатических факторов в совокупности с региональными характеристиками коррозионной активности грунтов интенсивность отказов в северной зоне в 1,4 раза, а в южной – в 16 раз превышает значение λср для средней полосы.

Особое значение имеют показатели региональной сельскохозяйственной и промышленной активности, влияющей на механическую и . Региональный характер проявления аварийности, помимо общих технологических причин и антропогенного влияния, определяется сложными геодинамическими процессами в верхнем слое земной коры.

Анализ показал существенные различия (до 40 раз) в интенсивности аварий в разных областях Российской Федерации. Это необходимо учитывать при анализе риска путем соответствующей коррекции λср по данным аварийности конкретного региона (области) или предприятия. В ряде районов, помимо этого, необходимо производить более детальные уточнения с учетом конкретной местной специфики трассы трубопровода. Из-за отсутствия инженерных методик такие уточнения рекомендуется выполнять введением специального коэффициента, определяемого методом экспертных оценок.

Также нередко причинами отказов являются плановые и глубинные деформации русла рек в створе перехода, размывы берегов, механические повреждения судовыми якорями, волокушами, льдом, потеря устойчивости трубопровода, коррозия и брак труб, а также дефекты строительно-монтажных работ.

Результаты выполненного ООО «ВНИИГАЗ» обобщения данных фирмы «Подводгазэнергосервис» и ИЦ «ВНИИСТ-Поиск» по основным причинам повреждений на подводных переходах приведены в табл. 6.


Аварии в русловой части чаще всего происходят в период весеннего паводка. Благодаря созданной в ОАО «Газпром» системе периодического контроля и профилактического ремонта аварии на этой части переходов сейчас довольно редки. По оценкам специалистов, интенсивность аварий в русловой части переходов примерно в 5–7 раз выше аналогичного показателя для смежных «сухопутных» участков.

В пойменной части подводных переходов разрывы трубопроводов возникают в основном в зимнее время. Это объясняется тем, что из-за нарушения изоляционного покрытия отдельных участков газопроводов на них может возникнуть коррозия, связанная с повышенной увлажненностью почв и интенсивными геохимическими процессами. Ослабленные коррозией участки труб могут быть легко разрушены под воздействием интенсивных сжимающих нагрузок со стороны обводненных грунтов при их промерзании.

Следует выделить основные проблемы, решение которых позволит в некоторой степени уменьшить аварийность объектов газового профиля.

Во-первых, основной упор делается на противодействие видимым (актуальным на сегодня) опасностям в ущерб деятельности по профилактике опасностей на стадии проектирования и ранних стадиях жизненного цикла объекта.
Во-вторых, происходит многократное повторение однотипных чрезвычайных ситуаций по причине отсутствия механизмов учета опыта расследования инцидентов, отказов и аварий в профилактике ЧС на стадиях проектирования, строительства, реконструкции и эксплуатации объекта.

Кроме того, можно отметить недостаточную эффективность действующих служб мониторинга. Службы отслеживания фактической обстановки на предприятиях, как правило, ограничиваются фиксацией «физических» явлений и процессов. Они не встроены в системы, обеспечивающие синтез и анализ наблюдений, принятие управленческих решений и корректировку собственной деятельности.

Литература

  1. Материалы ежегодных отчетов о деятельности Федеральной службы по экологическому, технологическому и атомному надзору за 2004-2014 года (http://www.gosnadzor.ru/public/annual_reports/).
  2. Промышленная безопасность и надежность магистральных трубопроводов / Под ред. А.И. Владимирова, В.Я. Кершенбаума. – М.: Национальный институт нефти и газа, 2009. 696 с.
  3. Башкин В.Н., Галиулин Р.В., Галиулина Р.А. Аварийные выбросы природного газа: проблемы и пути их решения // Защита окружающей среды в нефтегазовом комплексе. 2010. № 8. С. 4-11.
  4. Лисанов М.В., Савина А.В., Дегтярев Д.В. и др. Анализ Российских и зарубежных данных по аварийности на объектах трубопроводного транспорта //Безопасность труда в промышленности. 2010. № 7 С. 16-22.
  5. Лисанов М.В., Сумской С.И., Савина А.В. и др. Анализ риска магистральных нефтепроводов при обосновании проектных решений, компенсирующих отступления от действующих требований безопасности // Безопасность труда в промышленности. 2010. №3. С. 58-66.
  6. Мокроусов С.Н. Проблемы обеспечения безопасности магистральных и межпромысловых нефтегазопродуктопроводов. Организационные аспекты предупреждения несанкционированных врезок // Безопасность труда в промышленности. 2006. № 9. С. 16-19.
  7. Ревазов А.М. Анализ чрезвычайных и аварийных ситуаций на объектах магистрального газопроводного транспорта и меры по предупреждению их возникновения и снижению последствий // Управление качеством в нефтегазовом комплексе. 2010. № 1. С. 68-70.
  8. Руководитель департамента разработки планов ликвидации аварийных ситуаций (ПЛАС)