Реактивный танковый двигатель. Газотурбинный двигатель

Любой, кто поднимал сайты знает, что стоит запустить веб-сервер, как на него начинают приходить запросы. Еще и DNS про него толком не знает, а в лог-файле ошибок httpd уже полно записей вроде таких:

Вот мне стало интересно, и я решил изучить этот вопрос поглубже. Как только появилось время, я написал парсер логов веб-сервера. Поскольку люблю наглядность, результаты поместил на карту.
И вот какая картина получилась:


На карте маркерами отмечены местоположения, определенные по IP адресам источников сканирования. Для получения информации использовалась бесплатная оффлайновая библиотека SxGeo, а для отображения - 2GIS API. Конечно, в силу бесплатности библиотека SxGeo не обладает высокой точностью, а некоторые адреса попадают в океан. Однако со временем(на текущий момент у меня накопилась статистика за 2 месяца) картина приобретает вполне ясные очертания.

Наверняка какая-то часть из адресов это прокси. В то же время источники сканирования практически равномерно покрывают наиболее развитые в смысле ИТ регионы мира.

Однако, как сказал бы наш любимый Михаил Сергеевич Боярский - «Тысяча чертей», что не так с Австралией?

Кроме распределения источников сканирования мне также было интересно собрать целевые пути, которые проверяют сканеры. Таковых оказалось довольно много. Ниже приведу лишь малую часть таргетов для примера:

var/www/html/RPC2
/var/www/html/SQLite
/var/www/html/SQLiteManager
/var/www/html/SQLiteManager-1.2.4
/var/www/html/SQlite
/var/www/html/Snom
/var/www/html/Version.html
/var/www/html/Yealink
/var/www/html/\xd1\x86\xd1\x80\xd1\x89\xd1\x8b\xd1\x81\xd1\x84\xd1\x82\xd1\x8c\xd1\x83
/var/www/html/_PHPMYADMIN
/var/www/html/_pHpMyAdMiN
/var/www/html/_phpMyAdmin
/var/www/html/_phpmyadmin
/var/www/html/_query.php
/var/www/html/_whatsnew.html
/var/www/html/adm
/var/www/html/admin
/var/www/html/admin.php
/var/www/html/admin888
/var/www/html/admin_area
/var/www/html/admin_manage
/var/www/html/admin_manage_access
/var/www/html/admindb
/var/www/html/administrator
/var/www/html/administrator.php
/var/www/html/adminzone
Часто встречается игра с регистром:
/var/www/html/_PHPMYADMIN
/var/www/html/_pHpMyAdMiN
/var/www/html/_phpMyAdmin
/var/www/html/_phpmyadmin
Бывают и экзотические таргеты, которым уж точно неоткуда взяться у меня:
/var/www/html/w00tw00t.at.blackhats.romanian.anti-sec
/var/www/html/nmaplowercheck1523152976
/var/www/html/elastix_warning_authentication.php
Полный список таргетов вы можете забрать по ссылке в подвале. Система отлова сейчас работает в автоматическом режиме и значит постоянно пополняется.

Хорошо, но что с этим делать? Полученная нами информация, как и любая другая, может быть использована по-разному.

Например:

  1. При создании сайтов, особенно на основе стандартных CMS и с применением стандартных СУБД, желательно изменять стандартные имена каталогов и файлов. Не оставлять установочные директории после окончания установки. Не размещать конфигурационные файлы в корневой директории или папке с именем «configuration», «config» и т. п.
  2. Может быть блокировать на уровне iptables адреса, с которых ведется сканирование. Конечно это крайний случай, но возможность такая есть и она может быть автоматизирована.
  3. Используя словарь отловленных таргетов можно проверить структуру сайта на совпадения. для этого используется простейший скрипт.
И еще один способ использования «крутых хакеров» в своих целях это подъем посещаемости сайта. Это и шутка и нет.

Это действительно работает, если на основе словаря отловленных таргетов создать файлы на своем сайте, а внутри разместить произвольный текст и код счетчика. Это сработает конечно только при условии, что сканер может выполнять JS(дополнение от ).

И это шутка, потому что реально уникальных IP адресов сканеров не так и много. У меня за 2 месяца их наловилось 275. Сколько среди них «умных» ботов и браузеров не считал. Может и нет вовсе.

Надо отметить, что с некоторых адресов сканирование наблюдалось один раз, в то время как с других оно выполняется ежедневно. Но процесс этот постоянный. Интересно какую долю трафика в Сети занимает скан-трафик. Видимо не очень большую раз никто с этим не борется.

Вопрос: нужно ли обращать внимание на сканирование и что нужно делать чтобы не стать добычей сканеров?

P.S.
Явление сканирования хоть и рукотворное, но похоже уже стало естественным процессом для Интернет. Оно было есть и будет пока существует Сеть. Это вредный фактор, от которого можно защититься как очками от солнечного ультрафиолета.

Подведу некоторые итоги обсуждения:
1. Австралия таки существует но Интернет там дорог и его мало. То же и с НЗ. Зато есть океан, пляжи и кенгуру.

2. Сканирование веб ресурсов - частный случай сканирования реальных адресов в Интернет вообще. Таргетами служат практически все стандартные порты и стандартное ПО, а география источников сканирования совпадает с географией наличия «быстрого» доступа в Интернет.

3. Сканеры работают не просто так. Сканирование это первый этап взлома. Сканеры ведут поиск возможных уязвимостей. Наличие таких уязвимостей может быть использовано для заражения серверов вредоносным ПО или/и для получения доступа к личной информации.

4. В комментариях обсуждаются способы элементарной защиты от сканеров. Основные направления: изменение стандартных настроек ПО, определение и блокирование сканеров по бан-листу.

Все перечисленное это очевидные вещи. Но знание и понимание таких вещей точно помогает создать условия для безопасной работы Вашего ресурса.

Спасибо всем.

Список источников.

Как работает газотурбинный двигатель? Если рассматривать, более подробно процесс работы газотурбинного двигателя, то можно выделить несколько этапов, которые в соединении описывают сложный процесс преобразования энергии сжатого газа в механическую работу. Какие это этапы?

  • Подача и смесь. Атмосферный воздух в сжатом виде поступает из компрессора в камеру сгорания. Туда же поступает и топливо, в результате чего получается топливная смесь, которая в процессе сгорания выделяет очень много энергии.
  • Преобразование. После того, как топливная смесь в процессе сгорания преобразуется в энергию, необходимо преобразовать ее в механическую работу. Это происходит благодаря вращению специальных «лопаток» струей газа под большим давлением.
  • Разделение работы. Часть полученной механической работы от энергии топливной смеси, уходит на сжатия воздуха для следующей подачи, в компрессоре, а остальная энергия передается на приводимый агрегат.

Именно та работа, которая передается на приводимый агрегат и называется полезной! К слову, газотурбинный двигатель по праву считается двигателем, имеющим наибольшую удельную мощность, среди остальных двигателей внутреннего сгорания. Топливом к газотурбинному двигателю можно считать практически любое горючее: керосин, бензин, мазут, природный газ, дизельное топливо, судовое топливо, водяной газ, спирт, а также мелкий уголь!

Принцип работы газотурбинных двигателей.
Чтобы добиться высокого КПД в тепловом двигателе, необходимо добиться высокой температуры сгорания топливной смеси, но не всегда это можно достичь. Препятствиями можно назвать не способность материалов, из которых построен двигатель (никель, сталь, керамика и прочие) выдерживать большие температуры и давление. Очень большое количество трудов инженеров было направлено на то, чтобы успешно отводить тепло от турбины и использовать его там, где это необходимо. Смело можно сказать, что их работа была проведена не зря, ведь в настоящее время, благодаря подобным разработкам, было достигнута эта цель путем перенаправления тепла выхлопных газов, сжатому воздуху. Такой процесс называется рекуперирование. Это очень успешных подход, ведь в противном случае тепло выхлопных газов было бы просто утеряно, а так, оно способно служить источником нагрева сжатого воздуха, перед процессом дальнейшего сгорания. Таким образом, можно смело утверждать, что без этого процесса и специальных теплообменников (рекуператоров) не удалось бы достигнуть столь высокого КПД.


Максимальная скорость вращения турбинных лопаток, определяет максимальное давление, которое нужно достигнуть для получения наивысшей мощности двигателя. При этом, как правило, чем меньше двигатель, тем выше должна быть частота вращения вала, для поддержания максимальной скорость турбинных лопаток.


Что касается устройства, тут все не так и сложно, как можно себе представить. Газотурбинный двигатель состоит из камеры сгорания, где также установлены свечи зажигания и форсунка, для подачи топлива и получения искры в камере сгорания. Турбинное колесо со специальными лопатками установлено на одном валу с компрессором. К устройство двигателя также относятся: понижающий редуктор, теплообменник, выпускной трубопровод, впускной канал, а также диффузор и сопла.

При вращении вала компрессора, его лопасти захватывают воздух, который поступает через впускной канал. После того, как компрессор увеличивает скорость движения до 500 метров в секунду, он нагнетает его в диффузор. На выходе диффузора, скорость воздуха уменьшается, но с тем же повышается его давление. После диффузора, воздух попадает в теплообменник, где нагревается теплом отработанных газов и переходит в камеру сгорания. Помимо подогретого и сжатого воздуха, в камеру сгорания постоянно подается топливо в распыленном виде, через форсунку. Топливо смешивается с воздухом, образуя топливную смесь, далее эта смесь воспламеняется, с помощью искры, которую производит свеча. В результате сгорания, давление в камере повышается, нагретые газы проходят через сопло и попадают на лопатки турбинного колеса, которые приводятся в движение. Крутящий момент турбинного колеса передается через понижающий редуктор на трансмиссию автомобиля. Отработанные газы подходят в теплообменник, где подогревают поступивший сжатый воздух и выходят в атмосферу.

Основным недостатком газотурбинного двигателя является стоимость тепло прочных материалов, из которых должен быть построен двигатель. Помимо этого сложность работ и высокая степень очистки воздуха, который попадает в двигатель, также хорошо бьют по карману, но не смотря ни на что, разработка и усовершенствование газотурбинного двигателя уже вовсю проходит как в нашей стране, так и за границей.

Типы газотурбинных двигателей.
Касательно типов, их очень большое количество, при этом суть работы одна и та же, но выполнение – немного различно. В зависимости от типов, газотурбинный двигатель имеет широкое применение на морских судах, железнодорожных составах, автомобилях, самолетах, вертолетах и даже в танках.К слову на сегодняшний день лишь американский танк Абрамс М1А1 оснащен газотурбинным двигателем.У советских инженеров тоже были попытки применить ГТД на танках ,было даже несколько прототипов на базе Т-80,но почему то дальнейшие разработки были свёрнуты.

В пятидесятых годах прошлого века широкое распространение получили газотурбинные двигатели (ГТД) различных классов. Турбореактивные моторы разгоняли авиацию до сверхзвуковых скоростей, а по воде и железным дорогам двигались локомотивы и корабли с первыми моделями газотурбинных двигателей. Предпринимались попытки оснастить такими моторами и грузовики, однако эти эксперименты оказались неудачными. Подобные силовые установки, при всех своих плюсах – экономичности на номинальном режиме работы, компактности и возможности применять различные типы топлива – не были лишены недостатков. Прежде всего, это слишком большой расход топлива при разгоне или торможении, что в итоге и определило нишу, в которой ГТД нашли свое применение. Одним из итогов различных экспериментов с такой силовой установкой стал советский танк Т-80. Но достижение всемирной известности было далеко не простым делом. От начала работ по созданию танкового ГТД до начала его серийного производства прошло почти два десятка лет.

Первые проекты

Идея сделать танк с газотурбинной силовой установкой появилась еще тогда, когда никто и не думал о проекте Т-80. Еще в 1948 году конструкторское бюро турбинного производства Ленинградского Кировского завода начало работу над проектом танкового ГТД мощностью в 700 лошадиных сил. К сожалению, проект был закрыт за бесперспективностью. Дело в том, что 700-сильный двигатель, по расчетам, потреблял чрезвычайно много топлива. Расход признали слишком большим для практического использования. Чуть позже неоднократно предпринимались попытки сконструировать другие двигатели подобного класса, но они тоже не дали никакого результата.

Во второй половине пятидесятых годов ленинградские конструкторы создали еще один двигатель, который дошел до стадии сборки прототипа. Получившийся ГТД-1 не оснащался теплообменником и выдавал мощность до тысячи лошадиных сил при расходе топлива в 350-355 г/л.с. ч. Вскоре на основе этого двигателя сделали две модификации: ГТД1-Гв6 со стационарным теплообменником и ГТД1-Гв7 с вращающимся. К сожалению, несмотря на некоторый прогресс, все три модели ГТД имели расход топлива выше расчетного. Улучшить этот параметр не представлялось возможным, поэтому проекты закрыли.

В целом, все ранние проекты ГТД для сухопутной, в том числе и гусеничной, техники не отличались особыми успехами. Все они не смогли добраться до серийного производства. В то же время, в ходе разработки и испытаний новых моторов удалось найти немало новых оригинальных технических решений, а также собрать нужную информацию. К этому времени сформировались две основные тенденции: попытки приспособить авиационный двигатель для использования на танке и сделать специальный ГТД.

В начале шестидесятых годов произошло несколько событий, которые позитивно сказались на всем направлении. Сначала Научно-исследовательский институт двигателей (НИИД) предложил несколько вариантов моторно-трансмиссионного отделения для танка Т-55. Предлагались два варианта газотурбинного двигателя, отличавшиеся друг от друга мощностью и потреблением топлива. В апреле 1961 года вышло соответствующее распоряжение руководства страны, согласно которому НИИД должен был продолжить работы по начатым проектам, а на Челябинском тракторном заводе создавалось специальное конструкторское бюро, занятое исключительно тематикой ГТД.

Челябинские двигатели

Новое бюро получило индекс ОКБ-6 и объединило усилия с Институтом двигателей. Результатом проектирования стал проект ГТД-700. При мощности до 700 л.с. этот двигатель потреблял 280 г/л.с.ч, что приближалось к требуемым значениям. Столь высокие для своего времени характеристики были обусловлены рядом оригинальных решений. Прежде всего необходимо отметить конструкцию теплообменника, каналы которого были оптимизированы в плане сечения и скорости течения газов. Кроме того, на работе двигателя благотворно сказался новый одноступенчатый воздухоочиститель циклонного типа, задерживавший до 97% пыли. В 1965 году начались испытания двух первых образцов ГТД-700. Работа двигателей на стенде показала все преимущества примененных решений, а также позволила вовремя определить и исправить имеющиеся проблемы. Вскоре собрали еще три двигателя ГТД-700, один из которых позже был установлен на опытный танк «Объект 775Т». В марте 1968 года прошел первый запуск газотурбинного двигателя на танке и через несколько дней начались ходовые испытания. До апреля следующего года экспериментальный танк прошел около 900 километров при наработке двигателя порядка 100 часов.

Несмотря на имеющиеся успехи, в 1969 году испытания двигателя ГТД-700 завершились. В это время прекратились работы над ракетным танком «Объект 775» и, как следствие, его газотурбинной модификацией. Однако развитие двигателя не остановилось. По результатам испытаний сотрудники НИИД провели несколько исследований и пришли к позитивным выводам. Как оказалось, конструкция ГТД-700 позволяла довести мощность до уровня порядка 1000 л.с., а расход топлива снизить до 210-220 г/л.с.ч. Перспективная модификация двигателя получила обозначение ГТД-700М. Ее расчетные характеристики выглядели многообещающе, что привело к дальнейшим разработкам. ВНИИТрансмаш (переименованный ВНИИ-100) и конструкторское бюро ЛКЗ предприняли попытку установить ГТД-700М на танки «Объект 432» и «Объект 287». Однако никаких практических результатов добиться не удалось. Моторно-трансмиссионное отделение первого танка оказалось недостаточно большим для размещения всех агрегатов силовой установки, а второй проект вскоре был закрыт за бесперспективностью. На этом история двигателя ГТД-700 закончилась.

ГТД-3 для «Объекта 432»

Одновременно с НИИД и челябинскими конструкторами над своими проектами ГТД работали в омском ОКБ-29 (сейчас Омское моторостроительное конструкторское бюро) и ленинградском ОКБ-117 (завод им. В.Я. Климова). Стоит отметить, основным направлением работы этих предприятий была адаптация авиационных двигателей к танковым «нуждам». Этим фактом обусловлен целый ряд особенностей получившихся двигателей. Одним из первых переработке подвергся вертолетный турбовальный двигатель ГТД-3, разработанный в Омске. После адаптации для использования на танке он получил новый индекс ГТД-3Т и немного потерял в мощности, с 750 до 700 л.с. Расход топлива в танковом варианте составлял 330-350 г/л.с.ч. Такое потребление горючего было слишком велико для практического использования двигателя, но ГТД-3Т все же был установлен на ходовой макет, базой для которого послужил танк Т-54. Позже подобный эксперимент провели с танком Т-55 (проект ВНИИ-100) и с «Объектом 166ТМ» (проект Уралвагонзавода). Примечательно, что после испытаний своего опытного образца тагильские конструкторы пришли к выводу о нецелесообразности продолжения работ по газотурбинной тематике и вернулись к созданию танков с дизельными двигателями.

В 1965 году ОКБ-29 и ВНИИ-100 получили задание доработать двигатель ГТД-3Т для использования на танке «Объект 432», который вскоре был принят на вооружение под обозначением Т-64. В ходе такой доработки двигатель получил новое обозначение ГТД-3ТЛ и ряд изменений в конструкции. Изменились конструкция компрессора и корпуса турбины, появилась система перепуска газов после компрессора, созданы два новых редуктора (один в составе моторного агрегата, другой располагался на корпусе танка), а также переделана выхлопная труба. Имея сравнительно небольшие габариты, двигатель ГТД-3ТЛ хорошо вписался в моторно-трансмиссионное отделение «Объекта 432», а в свободных объемах уместились дополнительные баки на 200 литров топлива. Стоит отметить, в МТО танка пришлось ставить не только новый двигатель, но и новую трансмиссию, приспособленную для работы с газотурбинным двигателем. Крутящий момент двигателя передавался на главный редуктор и распределялся на две бортовые планетарные коробки передач. В конструкции новой трансмиссии широко использовались детали исходной системы «Объекта 432». Ввиду специфических требований двигателя к подаче воздуха пришлось заново спроектировать оборудование для подводного вождения, имеющее в своем составе воздухопитающие и выхлопные трубы большего диаметра.

В ходе проектирования двигателя ГТД-3ТЛ, с целью проверки некоторых идей, на танке Т-55 установили мотор ГТД-3Т. Танк с газотурбинным двигателем сравнили с аналогичной бронемашиной, оборудованной стандартным дизелем В-55. В результате этих испытаний подтвердились все предварительные расчеты. Так, средняя скорость опытного танка оказалась немного выше скорости серийного, но за это преимущество пришлось платить в 2,5-2,7 раза более высоким расходом топлива. При этом к моменту сравнительных испытаний не были достигнуты требуемые характеристики. Вместо необходимых 700 л.с. ГТД-3ТЛ выдавал лишь 600-610 и сжигал порядка 340 г/л.с.ч вместо требовавшихся 300. Повышенный расход топлива привел к серьезному уменьшению запаса хода. Наконец, ресурс в 200 часов не дотягивал даже до половины от заданных 500. Выявленные недостатки были учтены и вскоре появился полноценный проект ГТД-3ТЛ. К концу 1965 года ОКБ-29 и ВНИИ-100 совместными усилиями завершили разработку нового двигателя. За основу для него был взят не танковый ГТД-3Т, а авиационный ГТД-3Ф. Новый двигатель развивал мощность до 800 л.с. и потреблял не более 300 г/л.с.ч. В 1965-66 годах изготовили два новых двигателя и проверили их на танке «Объект 003», представлявшем собой доработанный «Объект 432».

Одновременно с испытаниями танка «Объект 003» шла разработка «Объекта 004» и силовой установки для него. Предполагалось использовать двигатель ГТД-3ТП, имевший большую мощность в сравнении с ГТД-3ТЛ. Кроме того, мотор с индексом «ТП» должен был размещаться не поперек корпуса танка, а вдоль, что повлекло за собой перекомпоновку некоторых агрегатов. Основные пути развития остались прежними, но их нюансы подверглись определенным коррективам, связанным с выявленными проблемами газотурбинных двигателей. Пришлось серьезно доработать систему забора и фильтрации воздуха, а также отвода выхлопных газов. Еще один серьезный вопрос касался эффективного охлаждения двигателя. Создание новой трансмиссии, повышение характеристик и доведение моторесурса до требуемых 500 часов также остались актуальными. При проектировании двигателя и трансмиссии для танка «Объект 004» старались скомпоновать все агрегаты таким образом, чтобы они могли уместиться в МТО с минимальными его доработками.

Наибольшим изменениям подверглась крыша моторно-трансмиссионного отделения и кормовой лист бронекорпуса. Крышу сделали из сравнительно тонкого и легкого листа с окнами, на которых разместили жалюзи воздухозаборного устройства. В корме появились отверстия для выброса газов двигателя и воздуха из системы охлаждения. Для повышения живучести эти отверстия прикрыли бронированным колпаком. Двигатели и некоторые агрегаты трансмиссии укрепили на заново разработанной раме, которая монтировалась на бронекорпусе без доработок последнего. Сам двигатель установили продольно, с небольшим сдвигом от оси танка влево. Рядом с ним разместились топливный и масляный насосы, 24 прямоточных циклона системы воздухоочистки, компрессор, стартер-генератор и т.п.

Двигатель ГТД-3ТП мог выдавать мощность до 950 л.с. при расходе топлива в 260-270 г/л.с.ч. Характерной чертой этого двигателя стала его схема. В отличие от предыдущих моторов семейства ГТД-3 он был сделан по двухвальной системе. С двигателем была сопряжена четырехскоростная трансмиссия, разработанная с учетом характерных для газотурбинного двигателя нагрузок. Согласно расчетам, трансмиссия могла работать в течение всего срока службы двигателя – до 500 часов. Бортовые коробки передач имели тот же размер, что и на исходном «Объекте 432» и помещались на исходных местах. Приводы управления агрегатами двигателя и трансмиссии в большинстве своем располагались на старых местах.

Насколько известно, «Объект 004» так и остался на чертежах. В ходе его разработки удалось решить несколько важных вопросов, а также определить планы на будущее. Несмотря на уменьшение заметности танка с ГТД в инфракрасном спектре, улучшившееся качество очистки воздуха, создание специальной трансмиссии и т.п., расход топлива оставался на недопустимом уровне.

ГТД из Ленинграда

Еще одним проектом, начавшимся в 1961 году, были ленинградские исследования перспектив турбовального двигателя ГТД-350. Ленинградские Кировский завод и Завод им. Климова совместными усилиями начали изучать поставленный перед ними вопрос. В качестве стенда самых для первых исследований применялся серийный трактор К-700. На него установили двигатель ГТД-350, для работы с которым пришлось немного доработать трансмиссию. Вскоре начался еще один эксперимент. На этот раз «платформой» для газотурбинного двигателя стал бронетранспортер БТР-50П. Подробности этих испытаний не стали достоянием общественности, но известно, что по их результатам двигатель ГТД-350 признали пригодным для использования на сухопутной технике.

На его базе создали два варианта двигателя ГТД-350Т, с теплообменником и без. Без теплообменника газотурбинный двигатель двухвальной системы со свободной турбиной развивал мощность до 400 л.с. и имел расход топлива на уровне 350 г/л.с.ч. Вариант с теплообменником был ощутимо экономичнее – не более 300 г/л.с.ч., хотя и проигрывал в максимальной мощности порядка 5-10 л.с. На основе двух вариантов двигателя ГТД-350Т были сделаны силовые агрегаты для танка. При этом, ввиду сравнительно малой мощности, рассматривались варианты с применением как одного двигателя, так и двух. В результате сравнений наиболее перспективным был признан агрегат с двумя двигателями ГТД-350Т, располагавшимися вдоль корпуса танка. В 1963 году началась сборка опытного образца такой силовой установки. Его установили на шасси экспериментального ракетного танка «Объект 287». Получившуюся машину назвали «Объектом 288».

В 1966-67 годах этот танк прошел заводские испытания, где подтвердил и скорректировал расчетные характеристики. Однако главным результатом поездок по полигону стало понимание того, что перспективы спаренной системы двигателей сомнительны. Силовая установка с двумя двигателями и оригинальным редуктором получилась сложнее в производстве и эксплуатации, а также дороже, чем один ГТД эквивалентной мощности с обычной трансмиссией. Предпринимались некоторые попытки развить двухдвигательную схему, но в итоге конструкторы ЛКЗ и Завода им. Климова остановили работы в этом направлении.

Стоит отметить, проекты ГТД-350Т и «Объект 288» были закрыты только в 1968 году. До этого времени, по настоянию заказчика в лице Минобороны, состоялись сравнительные испытания сразу нескольких танков. В них участвовали дизельные Т-64 и «Объект 287», а также газотурбинные «Объект 288» и «Объект 003». Испытания были суровыми и проходили на разных местностях и в разных погодных условиях. В результате выяснилось, что при имеющихся преимуществах в части габаритов или максимальной мощности существующие газотурбинные двигатели менее пригодны для практического применения, чем освоенные в производстве дизели.

Незадолго до прекращения работ по тематике спаренных двигателей конструкторы ЛКЗ и Завода им. Климова сделали два эскизных проекта, подразумевавших установку на танк «Объект 432» спаренной установки с перспективными двигателями ГТД-Т мощностью по 450 л.с. Рассматривались различные варианты размещения двигателей, но в итоге оба проекта не получили продолжения. Спаренные силовые установки оказались неудобными для практического применения и более не использовались.

Двигатель для Т-64А

Принятый на вооружение в шестидесятых годах танк Т-64А при всех своих преимуществах не был лишен недостатков. Высокая степень новизны и несколько оригинальных идей стали причиной технических и эксплуатационных проблем. Немало нареканий вызвал двигатель 5ТДФ. В частности, и из-за них было решено всерьез заняться перспективным ГТД для этого танка. В 1967 году появилось соответствующее постановление руководства страны. К этому времени уже имелся определенный опыт в сфере оснащения танка «Объект 432» газотурбинной силовой установкой, поэтому конструкторам не пришлось начинать с нуля. Весной 1968-го года на ленинградском Заводе им. Климова развернулись проектные работы по двигателю ГТД-1000Т.

Главным вопросом, стоявшим перед конструкторами, было снижение расхода топлива. Остальные нюансы проекта уже были отработаны и не нуждались в столь большом внимании. Улучшать экономичность предложили несколькими путями: повысить температуру газов, улучшить охлаждение элементов конструкции, модернизировать теплообменник, а также повысить КПД всех механизмов. Кроме того, при создании ГТД-1000Т применили оригинальный подход: координацией действий нескольких предприятий, занятых в проекте, должна была заниматься сводная группа из 20 их сотрудников, представлявших каждую организацию.

Благодаря такому подходу достаточно быстро удалось определиться с конкретным обликом перспективного двигателя. Таким образом, в планы входило создание трехвального ГТД с двухкаскадным турбокомпрессором, кольцевой камерой сгорания и охлаждаемым сопловым аппаратом. Силовая турбина – одноступенчатая с регулируемым сопловым аппаратом перед ней. В конструкцию двигателя ГТД-1000Т сразу ввели встроенный понижающий редуктор, который мог преобразовывать вращение силовой турбины со скоростью порядка 25-26 тыс. оборотов в минуту в 3-3,2 тыс. Выходной вал редуктора разместили таким образом, что он мог передавать крутящий момент на бортовые коробки передач «Объекта 432» без лишних деталей трансмиссии.

По предложению сотрудников ВНИИТрансмаш, для очистки поступающего воздуха применили блок прямоточных циклонов. Выведение выделенной из воздуха пыли было обязанностью дополнительных центробежных вентиляторов, которые, кроме того, обдували масляные радиаторы. Использование такой простой и эффективной системы очистки воздуха привело к отказу от теплообменника. В случае его использования для достижения требуемых характеристик требовалось очищать воздух почти на все 100%, что было, как минимум, очень сложно. Двигатель ГТД-1000Т без теплообменника мог работать даже если в воздухе оставалось до 3% пыли.

Отдельно стоит отметить компоновку двигателя. На корпусе собственно газотурбинного агрегата установили циклоны, радиаторы, насосы, маслобак, компрессор, генератор и прочие части силовой установки. Получившийся моноблок имел габариты, пригодные для установки в моторно-трансмиссионное отделение танка Т-64А. Кроме того, в сравнении с оригинальной силовой установкой, двигатель ГТД-1000Т оставлял внутри бронированного корпуса объем, достаточный для размещения баков на 200 литров топлива.

Весной 1969 года началась сборка опытных экземпляров Т-64А с газотурбинной силовой установкой. Интересно, что в создании прототипов участвовали сразу несколько предприятий: Ленинградский Кировский и Ижорский заводы, Завод им. Климова, а также Харьковский завод транспортного машиностроения. Чуть позже руководство оборонной промышленности решило построить опытную партию из 20 танков Т-64А с газотурбинной силовой установкой и распределить их по различным испытаниям. 7-8 танков предназначались для заводских, 2-3 для полигонных, а оставшиеся машины должны были пройти войсковые испытания в разных условиях.

За несколько месяцев испытаний в условиях полигонов и испытательных баз было собрано нужное количество информации. Двигатели ГТД-1000Т показали все свои преимущества, а также доказали пригодность для использования на практике. Однако выяснилась другая проблема. При мощности в 1000 л.с. двигатель не слишком удачно взаимодействовал с имеющейся ходовой частью. Ее ресурс заметно снижался. Более того, к моменту окончания испытаний почти все двадцать опытных танков нуждались в ремонте ходовой или трансмиссии.

На финишной прямой

Самым очевидным решением проблемы выглядела доработка ходовой части танка Т-64А для использования вместе с ГТД-1000Т. Однако такой процесс мог занять слишком много времени и с инициативой выступили конструкторы ЛКЗ. По их мнению, нужно было не модернизировать имеющуюся технику, а создавать новую, изначально рассчитанную под большие нагрузки. Так появился проект «Объект 219».

Как известно, за несколько лет разработки этот проект успел претерпеть массу изменений. Корректировались почти все элементы конструкции. Точно так же доработкам подвергся и двигатель ГТД-1000Т и сопряженные с ним системы. Пожалуй, самым главным вопросом в это время было повышение степени очистки воздуха. В результате массы исследований выбрали воздухоочиститель с 28 циклонами, оснащенными вентиляторами с особой формой лопасти. Для уменьшения износа некоторые детали циклонов покрыли полиуретаном. Изменение воздухоочистительной системы сократило поступление пыли в двигатель примерно на один процент.

Еще во время испытаний в Средней Азии проявилась другая проблема газотурбинного двигателя. В тамошних грунтах и песках было повышенное содержание кремнезема. Такая пыль, попав в двигатель, спекалась на его агрегатах в виде стекловидной корки. Она мешала нормальному течению газов в тракте двигателя, а также увеличивала его износ. Эту проблему пытались решить при помощи специальных химических покрытий, впрыска в двигатель особого раствора, создания вокруг деталей воздушной прослойки и даже применения неких материалов, постепенно разрушавшихся и уносивших с собой пригоревшую пыль. Однако ни один из предложенных методов не помог. В 1973 году эту проблему решили. Группа специалистов Завода им. Климова предложила установить на наиболее подверженную загрязнению часть двигателя – сопловой аппарат – специальный пневмовибратор. При необходимости или через определенный промежуток времени в этот агрегат подавался воздух от компрессора и сопловой аппарат начинал вибрировать с частотой в 400 Гц. Налипшие частички пыли буквально стряхивались и выдувались выхлопными газами. Чуть позже вибратор заменили восемью пневмоударниками более простой конструкции.

В результате всех доработок наконец удалось довести ресурс двигателя ГТД-1000Т до требуемых 500 часов. Расход топлива танков «Объект 219» был примерно в 1,5-1,8 раза больше, чем у бронемашин с дизельными двигателями. Соответствующим образом сократился и запас хода. Тем не менее, по совокупности технических и боевых характеристик танк «Объект 219сп2» признали пригодным для принятия на вооружение. В 1976 году вышло постановление Совмина, в котором танк получил обозначение Т-80. В дальнейшем эта бронемашина претерпела ряд изменений, на ее базе было создано несколько модификаций, в том числе и с новыми двигателями. Но это уже совсем другая история.

По материалам сайтов:
журнал "«Техника и вооружение: вчера, сегодня, завтра…»"

Последние 10 лет опыт эксплуатации танков с газотурбинным двигателем (ГТД) получил неадекватную критическую оценку специалистов. Причем критика звучит как в российских СМИ, так и в зарубежных. Суть подобных заявлений заключается в негативном отношении к газотурбинным двигателям, прежде всего, к одной его характеристике — повышенному расходу топлива.

В качестве доказательств противники танков с ГТД обычно приводят данные, полученные в ходе войсковой эксплуатации, а также высказывания руководящего состава Вооруженных Сил России, датированные серединой 1990-х гг. Однако, в основе таких заявлений, как правило, лежат оценки начала 1980-х гг. (разумеется, этот факт умалчивается). В конечном итоге, волны критики, исходящие от российских и зарубежных оппонентов ГТД, накатываясь одна за другой на сознание читателей, усиливают общее впечатление бесперспективности танков с газотурбинным двигателем и, в частности, Т-80У.

В начале 1980-х гг. учения с использованием танков Т-80, проходившие в Западной группе войск, выявили их существенно больший расход топлива (в 2,5-3 раза) по сравнению с дизельными двигателями. Однако следует иметь в виду, что первые Т-80 оборудовались двигателями ГТД-1000, которые в то время не были оснащены рядом устройств, способствующих значительному уменьшению расхода топлива и повышению их надежности. Дело в том, что особенностью ГТД является существенно больший (в разы) удельный расход топлива на холостых (малого газа) и тормозных режимах работы двигателя. Между тем, на этих учениях время работы на таких режимах составило более 60% от общего времени эксплуатации машин. Таким образом, отсутствие на этих танках режима стояночного малого газа приводило к 2-3-кратному перерасходу топлива при длительных стоянках и в значительной степени способствовало формированию у специалистов мнения о неудовлетворительной топливной экономичности ГТД.

Вместе с тем, главной причиной повышенного расхода топлива явилась необученность и недисциплинированность механиков-водителей. Неправильный выбор передачи в соответствии с условиями движения (необученный механик не чувствует этого из-за отсутствия эффекта заглохаемости двигателя, а недисциплинированный механик ленится переключать передачу, так как двигатель все равно справляется с любой внешней нагрузкой и не глохнет) также стал причиной неоправданно большого расхода топлива. Поэтому неудачный войсковой опыт эксплуатации танков Т-80 в ГСВГ следует рассматривать скорее как исключение из правил эксплуатации танков с ГТД. Важнее в этом смысле результаты, полученные при эксплуатации танков Т-80 в Белорусском, Забайкальском военном и Среднеазиатском военных округах, где путевой расход топлива танков с ГТД не превышал в 1,5-1,7 раза аналогичный показатель танков, оснащенных дизельными двигателями, удельная мощность которых в 1,3 раза уступала Т-80.

По результатам учений в ГСВГ опыт эксплуатации Т-80 тщательно проанализировали. Причины большого расхода топлива были установлены, и в результате проведения нескольких опытно-конструкторских работ устранены на следующих вариантах танка.

Усовершенствованный танк Т-80У успешно продемонстрировал свои ходовые возможности и эксплуатационные качества на предтендерных испытаниях в Греции в 1998 г., превзойдя по целому ряду показателей именитых конкурентов (американский М1А2 «Абраме», немецкий «Леопард-2А5», французский «Леклерк», английский «Челенждер-2», украинский Т-80УД).

Выяснилось, что у танка Т-80У самая высокая в мире удельная мощность — 27 л.с. на тонну веса (в 1,2-1,3 раза выше лучших мировых образцов). Кроме того, он самый быстрый: на испытаниях была зафиксирована скорость 80 км/ч. Максимальная скорость остальных танков оказалась на 14% меньше. Самая высокая удельная мощность и превосходная ходовая часть обеспечивают Т-80У 30-45%-ный выигрыш по средней скорости движения по пересеченной местности. В полном объеме, кроме танка Т-80У, преодолел все препятствия только французский «Леклерк».

По оценке проверяющих, время, затраченное на обслуживание Т-80У при совершении марша протяженностью более 2000 км, было минимальным среди всех соперников. По мнению греческих специалистов, этот танк является наиболее простым в управлении и обслуживании. Следует заметить, что никто из критиков не оперирует сведениями, полученными на греческих испытаниях.

Современное состояние вопроса экономичности эксплуатации (расход горюче-смазочных материалов) танка Т-80У с ГТД-1250

Для улучшения топливной экономичности на танке Т-80У осуществлен комплекс технических решений, снижающих эксплуатационный расход топлива в 1,3 раза.

Во-первых, внедрена система автоматического управления режимом (САУР). Она автоматически уменьшает подачу топлива при торможении танка и в еще большей степени — при вынужденных стоянках более одной минуты. Это позволило в значительной степени снизить путевой расход топлива. Во-вторых, увеличен КПД компрессора и допустимой температуры газов. Это привело к уменьшению часового расхода топлива. В-третьих, в состав танка включен вспомогательный энергоагрегат ГТА-18. При условии, что эксплуатация танка осуществляется в режимах 50% времени в движении и 50% времени на месте, внедрение ГТА-18 позволило существенно уменьшить суммарный часовой расход топлива, который по совокупности условий использования танков на 8% превосходит аналогичный параметр дизельного двигателя, не оснащенного автономным силовым агрегатом. Таким образом, экономия топлива от внедренных мероприятий по сравнению с серийным двигателем ГТД-1000 составляет 30%.

Результаты последних войсковых испытаний (1986 г.) и испытаний танка Т-80У в Греции в 1998 г. показали следующие значения топливной экономичности танков с ГТД по сравнению с танками, оснащенными дизельными двигателями: путевой расход топлива составил 4 л/км. Это всего на 25% выше, чем у дизельных танков (у «Леопард-2» — 3,2 л/км).

Достигнутая на сегодняшний день разница не является пределом для газотурбинных двигателей. В настоящее время специализированные КБ имеют наработки технических решений, которые в случае их реализации позволят достичь значений эксплуатационных расходов топлива танков с ГТД на уровне танков с дизельными двигателями равной мощности. Однако для завершения соответствующих ОКР, которые приостановлены, необходимо финансирование.

Подтверждением перспективности ГТД (в том числе по топливной экономичности) является тот факт, что американская фирма «Дженерал Электрик» разработала агрегированную газотурбинную установку мощностью 1500 л.с. для демонстрации высоких перспективных технологий. Поданным фирмы, минимальный удельный расход топлива этого двигателя всего 147 г/л.с. ч, что на 10% меньше, чем у современных дизельных двигателей.

Следует отметить, что топливная экономичность — не совсем корректный показатель, по которому следует сравнивать танки с дизельным двигателем и ГТД. Правильнее проводить оценку по совокупному расходу топлива и масла. Это связано с тем, что в танках с газотурбинными двигателями практически не расходуется масло, тогда как в танках с дизельным двигателем расход масла достигает 3-5% от расхода топлива. С учетом трехкрактного превышения стоимости масла над топливом суммарная стоимость эксплуатации (по показателям стоимости топлива и масла) танков с ГТД всего на 11% дороже, чем танков с дизельными двигателями.

В продолжение экономической составляющей поднятой темы следует провести комплексную экономическую оценку эффективности эксплуатации и ремонта танков с дизельным и газотурбинным двигателем. По результатам этой работы может быть сделан неожиданный вывод о превосходстве танков с ГТД по этому показателю. К сожалению, такие исследования в Министерстве обороны не проводились.

Оппоненты танков с ГТД, сосредоточив свою критику на одном недостатке, не раскрывают в полной мере преимущества Т-80У, ограничиваясь упоминанием нескольких из них, причем не самых важных. Между тем, преимущества этого танка настолько существенны, что многократно перекрывают его недостатки.

Стратегические преимущества

В танке Т-80У решена проблема мобильности посредством оптимального сочетания наилучших компоновочных и инженерных решений и за счет высокой энерговооруженности танка, плавности хода, надежности узлов и агрегатов силовой установки, трансмиссии и ходовой части. Средняя скорость движения Т-80У на 10% выше аналогичного показателя танков с дизельным двигателем при движении по дорогам и на 30-45% — на пересеченной местности с подъемами и спусками до 10-12%. Для сравнения: в начальный период Великой Отечественной войны немецкие механизированные войска превосходили советские по подвижности на 13%. Этого было достаточно для осуществления широкого упреждающего маневра с целью выхода на выгодные рубежи, достижения результатов операции (прорыв обороны на большую глубину осуществления охвата и окружения советских войск).

Газотурбинный двигатель не чувствителен к аэрозолям, которые могут вывести из строя целые танковые подразделения. Это связано с потерей маслами смазывающих свойств под действием указанных аэрозолей. Создание требуемых высоких концентраций ацетилена в воздухе возможно путем разбрызгивания из емкостей, сбрасываемых с самолетов, вертолетов, а также доставки в составе артиллерийских снарядов и мин. Первый опыт использования таких аэрозолей относится к войне во Вьетнаме, где их применили американцы. В газотурбинном двигателе масло не контактирует с рабочим телом двигателя, поэтому этот тип оружия для ГТД не опасен.

Конструктивные преимущества

Система охлаждения дизельного двигателя забирает до 18% его мощности. В газотурбинном двигателе нет системы водяного охлаждения. Таким образом, справедливо сравнивать не мощность, снимаемую с коленвала двигателя, а мощность, передаваемую на трансмиссию. Это и будет фактически полезная мощность силовой установки. По этому показателю ГТД-1250 превосходит дизельный двигатель В-92С2 (Т-90С) в 1,3 раза.

Более того, о превосходстве конструкции танка в части компоновки и применяемых двигателя и трансмиссии (и их влияния на его мобильность) следует судить по габаритной мощности моторно-трансмиссионного отделения (МТО). По этому показателю Т-80У превосходит Т-90 в 1,6 раза. «Леопард-2» — в 2,4 раза. Такое превосходство Т-80У объясняется существенно меньшим объемом МТО по сравнению с МТО немецкой машины и Т-90, а также отсутствием потерь мощности на работу системы охлаждения.

Огромные размеры МТО зарубежных танков добавляют лишних 4-4,5 т брони, необходимой для равноценной защиты боковых проекций, и вынуждают конструкторов (в том числе по этой причине) внедрять в конструкцию шасси седьмой каток. Кроме того, вес составных агрегатов МТО (двигатель, трансмиссия) западных танков на 4,5 т больше, чем у Т-80У. Совокупный вес той части танка, которая не относится к боевому отделению и отделению управления (полезный объем) на 8,5-9 т превышает аналогичный показатель Т-80У. Следовательно, на перемещение избыточной, непродуктивной массы танка расходуется от 14,5 до 15,7% мощности двигателя.

В конечном итоге, удельная мощность танка (с учетом отбора мощности на работу системы охлаждения) составляет: для Т-80У — 26,5 л.с./т (самый высокий показатель в мире), для Т-90С — 18,7 л.с./т, для «Леопард-2» — 22,2л.с./т.

Малые габариты двигателя Т-80У, отсутствие теплообменника и гидротрансформатора резко упрощают конструкцию МТО и его компоновку. Больший крутящий момент (более чем в 2 раза), развиваемый газотурбинным двигателем, исключает необходимость установки автоматической трансмиссии.

Наличие четырех передач на Т-80У вместо семи на Т-90 упрощает конструкцию бортовых коробок передач, уменьшает их вес, габариты и главное — повышает надежность работы.

Вибрация газотурбинного двигателя значительно ниже, чем дизеля. Поэтому скорость обнаружения цели и точность стрельбы (главный показатель огневой мощи) по определению выше у танка с ГТД. Существенно лучшая плавность хода Т-80У также повышает точность стрельбы и уменьшает утомляемость экипажа.

Суммарная теплоотдача газотурбинного двигателя в 10 раз меньше, чем дизельного. За этим фактором следуют очень важные последствия: площадь радиаторов, например, становится втрое меньше.

Площадь ослабленных зон в крыше МТО танка с ГТД меньше в 2-3 раза по сравнению с танком с дизельным двигателем. Допустимый коэффициент пропускания у ГТД пыли в 10 раз меньше, чем у дизелей. Двигатель не глохнет, даже если танк упирается в неподвижное препятствие.

Эксплуатационные преимущества Т-80У отличает более высокая проходимость по слабым грунтам за счет плавности приложения нагрузки, широкого диапазона работы газотурбинного двигателя по оборотам выходного вала (0-100%), высокого коэффициента приспособляемости по крутящему моменту в этом диапазоне Кпр=2,6 и отсутствия заглохаемости двигателя при максимальном крутящем моменте.

Танк может двигаться на любой передаче без заглохания двигателя в различных дорожных условиях вплоть до остановки. У Т-80У отсутствует необходимость обслуживания системы охлаждения. Трудоемкость технического обслуживания газотурбинной силовой установки меньше в 2 раза.

Ресурс танкового ГТД в 2-3 раза выше, чем у дизельных двигателей, вследствие уравновешенности и сведения к минимуму трущихся поверхностей в двигателе, что значительно увеличивает долговечность деталей и снижает конечную стоимость двигателя при массовом производстве и в целом стоимости жизненного цикла Т-80У.

Боеспособность

Время подготовки танка для движения у газотурбинного двигателя в несколько раз меньше, чем у дизеля. Особенно это заметно при низких температурах. ГТД лучше удовлетворяет требованиям многотопливности, чем дизельный двигатель (многотопливность — возможность работы двигателя на дизельном топливе, бензине, керосине и их смесях в любой пропорции без какой-либо перерегулировки двигателя). У Т-80У существенно ниже уровень заметности выхлопных газов (в 2-3 раза), а следовательно, выше уровень шумо- и тепломаскировки.

Эргономические преимущества

Существенно лучшая плавность хода Т-80У уменьшает утомляемость экипажа. Шум, вибрация, состав выхлопных газов и др. факторы, определяющие утомляемость экипажа, значительно лучше у танка с ГТД.

Экологические преимущества

Т-80У с ГТД свойственны более высокие экологические качества вследствие малой токсичности выхлопных газов, отсутствия антифриза и токсичных синтетических масел. Газотурбинному двигателю нет альтернативы при работе в зоне радиационной зараженности. Радиационные частицы вместе с воздухом попадают в проточную часть двигателя, затем выбрасываются вместе с выхлопными газами. У дизельного двигателя частицы с воздухом, попадая в цилиндры, контактируют с маслом, а затем оказываются в масляной системе, которая по истечении некоторого времени становится мощным радиационным источником.

Мероприятия по повышению конкурентоспособности танка Т-80У

В настоящее время предприятия промышленности во взаимодействии с Министерством обороны завершают выполнение ряда ОКР, которые существенно повышают огневую мощь, защищенность, мобильность, ремонтопригодность и эксплуатационную надежность Т-80У.

1. Внедрение принципиально новой системы управления огнем с танковой информационно-управляющей системой.

Такая система (разработчик — ОАО «Спецмаш», г. Санкт-Петербург) обладает существенными преимуществами над штатной СУО танка Т-80У. Она обеспечивает:

— увеличение дальности действительной стрельбы сходу на 350-500 м, т.е. до 2400-2550 м;
— повышение боевой скорострельности (с места наводчика — на 12% днем и в 2 раза ночью; с места командира — в 2 раза днем и в 3 раза ночью);
— автоматический встроенный контроль технического состояния комплекса вооружения, что дает возможность экипажу поддерживать работоспособность комплекса без привлечения специального контрольно-проверочного оборудования и квалифицированного технического персонала;
— автоматизированную диагностику причин неисправностей комплекса вооружения с возможностью автоматической передачи информации в подразделения материально-технического обеспечения;
— существенное (в 2 раза) сокращение количества органов управления и операций с ними за счет автоматизации процессов;
— автоматическую выдачу рекомендаций о необходимых действиях члену экипажа при задержках или неисправностях;

Кроме того, суммарный объем аппаратуры, значительно повышающий ТТХ СУО, на 27 л меньше, чем объем штатной аппаратуры, функции которой выполняет ТИУС. Это позволило, к примеру, увеличить боекомплект танка на два выстрела. Внедрение ТИУСа также обеспечило возможность интегрирования танков Т-80У в общую информационно-управляющую систему войсками и оружием дивизионного и армейского звена.

2. Размещение на танке Т-80У комплекса активной системы защиты «Арена».

КАЗ «Арена» (разработчик — КБМ, г. Коломна) обеспечивает защиту танка от ПТУР и противотанковых гранат во всех условиях боевого применения танка в любое время суток и года в любую погоду. Танк Т-80У, оснащенный комплексом активной защиты, обладает рядом преимуществ по сравнению с традиционной броневой и динамической защитой.

Подрыв противотанкового средства происходит на достаточно большом удалении (6-8 м) от брони, что позволяет значительно ослабить его воздействие. Перекрывается вся проекция танка, в том числе ослабленные места: смотровые приборы, стыки, датчики, фары. При этом большой процент поражения целей происходит без образования кумулятивного эффекта или подрыва боевых частей противотанковых средств. Обеспечивается двух-трехкратная защита танка с одного направления. Азимутальный сектор защиты КАЗ более чем в 3 раза шире, чем у динамической защиты.

Предлагаемая схема защиты позволяет, кроме обычных ПТУР, перехватывать ПТУР типа В11Х, ТОУ-2В, поражающие танк при пролете над ним. Потери танков, оснащенных КАЗ, снижаются в 1,8-2 раза по сравнению с танками, не оснащенными комплексом.

3. Внедрение в состав трансмиссии гидрообъемной передачи (ГОП).

Как показали результаты международных испытаний, установка ГОП (разработчик — ЦНИИАГ, г. Москва) позволила существенно повысить управляемость танка, увеличить за счет этого среднюю скорость движения по совокупности дорожных условий и снизить путевой расход топлива до уровня, близкого к тому же показателю дизельных двигателей.

Таким образом, танки Т-80У отнюдь не исчерпали своих модернизационных возможностей, а также привлекательности для зарубежных покупателей российской бронетанковой техники. К сожалению, официальный экспорт этих машин по ряду причин ограничился Кипром и Республикой Корея. Сейчас, наверное, было бы утопичным предполагать возобновление производства этих танков с учетом ситуации в Санкт-Петербурге и Омске. Но реализация вышеописанного комплекса мероприятий могла бы существенно повысить конкурентоспособность имеющихся в частях и находящихся на базах хранения машин в случае принятия решения об их поставке за рубеж. Это, конечно, не означает, что танки из наличия должны составлять конкуренцию новым Т-90, но и заказчики бывают разными и с разными финансовыми возможностями. А техника «б/у», как показывает практика США, ФРГ и даже Украины, пользуется устойчивым спросом

5094